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Why Residual Neural Networks

Sofia Holguin and Vladik Kreinovich

Abstract In the traditional neural networks, the outputs of each layer serve as inputs
to the next layer. It is known that in many cases, it is beneficial to also allow outputs
from pre-previous etc. layers as inputs. Such networks are known as residual. In
this paper, we provide a possible theoretical explanation for the empirical success
of residual neural networks.

1 Formulation of the Problem

What are neural networks: a brief reminder. Lately, neural networks have shown
to be the most efficient machine learning tools; see, e.g., [1]. The basic computations
unit of a neural network is a neuron. It transforms inputs x1, . . . ,xn into a value

s(a0 +a1 · x1 + . . .+an · xn) (1)

for some constants ai. Here s(x) is a nonlinear function known as an activation
function. In a neural network:

• some neurons process the inputs,
• some neurons process the results of other neurons.

Usually, neurons form layers:

• neurons from layer 1 process inputs,
• neurons of layer 2 process the results of neurons of layer 1, etc.
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In the last layer, usually, we simply compute a linear combination of the signals
from the previous layer.

What are residual neural networks. The main idea behind residual neural net-
works is that each neuron at layer i can use, as inputs:

• not only the outputs of the previous (i−1)-st layer,
• but also outputs from the layers before it: (i−2)-nd, etc.

Residual neural networks are efficient, but why? Empirically, residual neural
networks are often more efficient than the traditional ones; see, e.g., [?]. In this
paper, we provide a possible theoretical explanation for this efficiency.

2 Our Explanation

Our model. In real life applications, most dependencies are smooth. Functions de-
scribing many smooth dependencies can be expanded in Taylor series. In this case,
the sum of the first few terms in these Taylor series provides a good approximation
to the resulting dependence. This is how most special functions like exp, sin, etc.
are usually computed. For example, the exponential function is usually computed as

exp(x)≈ 1+ x+
x2

2!
+

x3

3!
+ . . .+

xn

n!
. (2)

The simplest nonlinear approximation is when we take into account only con-
stant, linear, and quadratic terms in the general Taylor expansion. Then, we consider
expressions of the type

f (x1, . . . ,xn) = a0 +
n

∑
i=1

ai · xi +
n

∑
i, j=1

ai j · xi · x j. (3)

This approximation is what we will consider in our model, both:

• in the description of the function that we want to approximate and
• in description of the activation function.

In both cases, we will ignore cubic and higher order terms, and assume that all these
functions are quadratic.

It is sufficient to consider neurons with activation function s(x) = x2. First, we
show that in this approximation, we can replace each neuron by a neuron with s(x)=
x2. This can be done at the expense of changing the coefficients in the corresponding
linear terms a0 +a1 · x1 + . . .

Indeed, any nonlinear quadratic function of one variable s(x) = a · x2 +b · x+ c,
with a ̸= 0, can be represented as
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s(x) = a ·
(

x+
b

2a

)2

+

(
c− b2

4a

)
. (4)

Thus, the output
y = s(a0 +a1 · x1 + . . .+an · xn) (5)

of this neuron can be computed by the simple quadratic neuron s(x) = x2 as

y = a ·
((

a0 +
b

2a

)
+a1 · x1 + . . .+an · xn

)2

+

(
c− b2

4a

)
. (6)

Vice versa, for each nonlinear quadratic expression s(x) = a · x2 +b · x+ c, from
the formula (4), we conclude that

s
(

x− b
2a

)
= a · x2 +

(
c− b2

4a

)
, (7)

thus

a · x2 = s
(

x− b
2a

)
−
(

c− b2

4a

)
, (8)

and

x2 =
1
a
· s
(

x− b
2a

)
− 1

a
·
(

c− b2

4a

)
. (9)

Thus, the output
y = (a0 +a1 · x1 + . . .+an · xn)

2 (9)

of the simple quadratic neuron can be computed by the neuron with activation func-
tion s(x) as

y =
1
a
· s
((

a0 −
b

2a

)
+a1 · x1 + . . .+an · xn

)
− 1

a
·
(

c− b2

4a

)
. (10)

Because of this equivalence, in the following text, we will consider the simplest
quadratic neuron, with activation function s(x) = x2.

In this approximation, one nonlinear layer is sufficient. A general quadratic ex-
pression is a linear combination of terms x2

i , xi · x j, xi, and 1. Each of these terms
can be computed by a single layer; indeed:

• Each term x2
i can be obtained by a single quadratic neuron.

• Each term xi · x j can be obtained as

(xi + x j)
2 − (xi − x j)

2

4
. (11)

• Each term xi can be obtained as

(xi +1)2 − (xi −1)2

4
. (12)
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So one nonlinear layer is sufficient to represent any quadratic expression.

How many neurons we need. Let us denote by k the rank of the matrix ai j. We can
use new coordinates z1, . . . ,zn in which coordinate axes are proportional to eigen-
vectors. Then, the given quadratic expression takes the form

c0 +
n

∑
i=1

ci · zi +
k

∑
i=1

cii · z2
i . (13)

When k < n, then:

• traditional neural network needs at least k+1 neurons, since otherwise it cannot
cover terms proportional to zk+1, zk+2, etc., but

• with residual neural network, the above formulas enables us to use only k non-
linear neurons.

This explains why residual neural networks are more efficient.
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