
University of Texas at El Paso University of Texas at El Paso 

ScholarWorks@UTEP ScholarWorks@UTEP 

Departmental Technical Reports (CS) Computer Science 

11-1-2021 

Why Model Order Reduction Why Model Order Reduction 

Salvador Robles 
The University of Texas at El Paso, sroblesher1@miners.utep.edu 

Martine Ceberio 
The University of Texas at El Paso, mceberio@utep.edu 

Vladik Kreinovich 
The University of Texas at El Paso, vladik@utep.edu 

Follow this and additional works at: https://scholarworks.utep.edu/cs_techrep 

 Part of the Computer Sciences Commons, and the Mathematics Commons 

Comments: 

Technical Report: UTEP-CS-21-97 

Recommended Citation Recommended Citation 
Robles, Salvador; Ceberio, Martine; and Kreinovich, Vladik, "Why Model Order Reduction" (2021). 
Departmental Technical Reports (CS). 1630. 
https://scholarworks.utep.edu/cs_techrep/1630 

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UTEP. It has 
been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of 
ScholarWorks@UTEP. For more information, please contact lweber@utep.edu. 

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/cs_techrep
https://scholarworks.utep.edu/computer
https://scholarworks.utep.edu/cs_techrep?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1630&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1630&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1630&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/cs_techrep/1630?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1630&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu


Why Model Order Reduction

Salvador Robles, Martine Ceberio, and Vladik Kreinovich

Abstract Reasonably recently, a new efficient method appeared for solving com-
plex non-linear differential equations (and systems of differential equations). In this
method – known as Model Order Reduction (MOR) – we select several solutions,
and approximate a general solution by a linear combination of the selected solu-
tions. In this paper, we use the known explanation for efficiency of neural networks
to explain the efficiency of MOR techniques.

1 Formulation of the Problem

We need to solve systems of differential equations. In physics, in engineering, in
many areas of biology, the corresponding phenomena are described by systems of
differential equations. Thus, to make predictions about these phenomena, we need
to solve such systems.

Solving systems of differential equations is difficult. In general, systems of dif-
ferential equations are difficult to solve. This difficulty is easy to explain:

• In general, when we solve a system of N equations with N unknowns, the more
unknowns we have, the more difficult it is to solve this system.

• In systems of differential equations, the unknowns are the functions s(x). To
exactly describe a general function, we need to describe infinitely many different
numerical values – e.g., the values s(xi) of this function at all possible points xi.

The more accurately we want to represent a function, the more parameters we will
need. To get a good approximation to the desired function, we therefore need to

Salvador Robles, Martine Ceberio, and Vladik Kreinovich
Department of Computer Science, University of Texas at El Paso
El Paso, Texas 79968, USA
e-mail: sroblesher1@miners.utep.edu, mceberio@utep.edu, vladik@utep.edu

1



2 Salvador Robles, Martine Ceberio, and Vladik Kreinovich

solve a system with a large number of unknowns – which requires a lot of compu-
tational efforts.

Model Order Reduction. Reasonably recently, a new method appeared – known as
Model Order Reduction (MOR, for short) that helps to solve systems of differential
equations; see, e.g., [1]. In this method, once we have found several different solu-
tions s1(x), . . . , sn(x), we then look for approximate solutions s(x) which are linear
combinations of the known solutions, i.e., that have the form

s(x) = c1 · s1(x)+ . . .+ cn · sn(x)

for some coefficient ci.
In this approximation, we have only n unknowns, so when n is reasonably small,

we have a relatively easy-to-solve system of equations.

This method works, but why? The main idea of this method comes from linear
systems, where, once you have several solutions, any linear combination of these
solutions is also a solution. Many real-life systems are, however, non-linear. Inter-
estingly, MOR method works very well for many non-linear systems as well.

Why it works is not clear. In this paper, we provide a possible explanation for this
empirical success. This explanation is related to the explanation of another empirical
success phenomena – an explanation of why neural networks (see, e.g., [2, 3, 4])
work well in many situations.

2 From Neural Networks to Model Order Reduction: Our
Explanation

Why neural networks: a reminder. One of the main original motivations for neural
networks came from the need to speed up computations – and from the observation
of how biological neural networks process data.

Computers can now perform many tasks that humans do: e.g., they can recognize
faces, control cars, etc. However, computers perform these tasks by using super-fast
processing units that perform billions of operations per seconds, while we humans
perform the same tasks by using neurons the fastest of which can perform at most
100 operations per second. The reason why a human brain can make important
decisions in a short period of time is that in the brain, there are billions of neurons
that work in parallel. As a result, during the time when one neuron processes data,
all involved neurons perform billions of computational steps.

What is the fastest way to set up such parallel computations? In parallel compu-
tations, first, all the processors perform some operations, then they perform some
other operations, etc. Computations are the fastest when each of these operations
requires the smallest amount of computation time, and when the number of such
consequent operations is the smallest possible.



Why Model Order Reduction 3

Which operations are the fastest? In a deterministic computer, the result of each
operation is uniquely determined by its inputs, i.e., in mathematical terms, is a func-
tion of these inputs. Out of all possible functions, linear functions are the fastest to
compute. However, we cannot use only linear functions: if all the processors were
computing linear functions of their inputs, then all we could compute are compo-
sitions of linear functions – which are also linear, while many real-life processes
are non-linear. Thus, in addition to linear functions, we should also compute some
non-linear functions.

In general, the more inputs we have, the longer it takes to perform the corre-
sponding computations. Thus, the fastest is to compute non-linear functions with
the smallest number of inputs – i.e., non-linear functions s(x) with only one input
x. So, to make computations faster, on each computation stage, we either compute a
linear function or a non-linear function of one variable.

To make computations fast, a linear stage cannot be followed by a linear stage.
Indeed, if after computing a linear function, we again compute a linear function of
the first stage’s output, we will still be computing a linear function of the original
inputs – and this can be done in a single stage. Similarly, if we first compute a
function y = s(x) of one variable, and then compute another function z = t(y) of one
variable, then, in effect, we compute a composition z = t(s(x)) of these functions,
and this can also be done in a single stage. Thus, in fast computations, a linear stage
must be followed by a non-linear stage, and a non-linear stage must be followed by
a linear stage.

How many stages do we need? If we use only one stage, then all we can compute
are either linear functions or functions of one variable, and many real-life quantities
depend non-linearly on several variables. So, we need to have at least two layers.
This is exactly how a neural network works: each of its processing units (neurons):

• first computes a linear combination y = w1 · x1 + . . .+wn · xn +w0 of its inputs
x1, . . . ,xn, and

• then applies a non-linear function z = s(y) – known as an activation function –
to the resulting value y.

As a result, each neuron computes the value

z = s(w1 · x1 + . . .+wn · xn +w0).

From general to specific computational problems. Neural networks are used for
machine learning, when:

• we have no prior information about the dependence between the quantities, and
• we want to determine this dependence based on observation results.

In this case, it makes sense to require that a neural network be able to approximate
any possible dependence. So, the activation functions are selected to make sure that
the corresponding neural networks are universal approximators – i.e., that they can
approximate any reasonable function with any given accuracy.



4 Salvador Robles, Martine Ceberio, and Vladik Kreinovich

For a general neural network, in principle, in addition to activation functions (that
need to be computed every time), we can also use functions that have already been
computed before. Using these functions will not add computation time – since these
functions have already been computed before. However, since a neural network is
intended to compute all possible functions from all possible domains, having a pre-
computed function from, e.g., biology will probably not help in solving the next
problem which may be from geosciences.

In contrast, when we solve a given system of differential equations, we are in-
terested in very specific functions – solutions to this system of equations. Many of
these solutions – e.g., corresponding to similar initial conditions – are similar, so
it is reasonable to expect that knowing a solution to a similar problem can help in
solving the current problem. Thus, for solving systems of differential equations, it
makes sense to consider, in addition to activation functions (of one variable), also
use pre-computed functions s1(x), . . . ,sn(x), possibly of several variables.

What can we compute this way if we use the fastest (two-stage) computations?
Since a linear layer cannot be followed by a linear one and a non-linear stage cannot
be followed by a non-linear one, we have two options:

• we can have a linear stage followed by a non-linear stage; we will denote this
option by L-NL, and

• we can have a non-linear stage followed by a linear stage; we will denote this
option by NL-L.

L-NL option. In this option, first, we compute some linear combinations T (x) of the
inputs, and then apply an appropriate non-linear function si, resulting in si(T (x)).

The problem is that in this option, we have n different families of functions corre-
sponding to using n different pre-computed functions si(x). There is no continuous
transition between these families. In this sense, we have a union of n disconnected
families of functions. However, what we want to approximate is the family of all
solutions, which continuously depend on initial conditions and parameters of the
system. In other words, in this option, there is a discrepancy between:

• the class of functions that we want to approximate – namely, the class of all
solutions corresponding to different initial conditions and different values of the
parameters, and

• the class of functions that we use for approximation – in this option, the class of
functions si(T (x)) corresponding to i = 1, . . . ,n.

This leaves us with the need to consider the second option.

NL-L option. In this case, first, we apply non-linear functions, i.e., compute the
values y1 = s1(x), . . . ,yn = sn(x), and then we compute a linear combination of these
values, i.e., an expression

c1 · y1 + . . .+ cn · yn + c0 = c1 · s1(x)+ . . .+ cn · sn(x)+ c0.

In this options, different solutions correspond to different values of ci, so they can
be easily smoothly transformed into one another.



Why Model Order Reduction 5

Modulo a constant term c0, what we get in this option is exactly the approxima-
tion used in Model Order Reduction (MOR). Thus, we have indeed explained the
empirical success of the MOR techniques: they naturally appear if we are looking
for the fastest-to-compute approximations.

Acknowledgments

This work was supported in part by the National Science Foundation grants:

• 1623190 (A Model of Change for Preparing a New Generation for Professional
Practice in Computer Science), and

• HRD-1834620 and HRD-2034030 (CAHSI Includes).

It was also supported:

• by the AT&T Fellowship in Information Technology, and
• by the program of the development of the Scientific-Educational Mathematical

Center of Volga Federal District No. 075-02-2020-1478.

References

1. P. Benner, S. Grivet-Talosia, A. Quarteroni, G. Rozza, W. Schilders, and L. M. Silveira (eds.),
Model Order Reduction, de Gruyter, Berlin, 2020.

2. C. M. Bishop, Pattern Recognition and Machine Learning, Springer, New York, 2006.
3. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, Cambridge, Mas-

sachusetts, 2016.
4. V. Kreinovich and O. Kosheleva, “Optimization under uncertainty explains empirical success of

deep learning heuristics”, In: P. Pardalos, V. Rasskazova, and M. N. Vrahatis (eds.), Black Box
Optimization, Machine Learning and No-Free Lunch Theorems, Springer, Cham, Switzerland,
2021, pp. 195–220.


	Why Model Order Reduction
	Recommended Citation

	tmp.1639007643.pdf.J2JjH

