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Different Concepts, Similar Computational
Complexity: Nguyen’s Results about Fuzzy and
Interval Computations 35 Years Later

Hung T. Nguyen and Vladik Kreinovich

Abstract When we know for sure which values are possible and which are not, we
have crisp uncertainty – of which interval uncertainty is a usual case. In practice,
we are often not 100% sure about our knowledge, i.e., we have fuzzy uncertainty
– i.e., we have fuzzy knowledge, of which crisp is a particular case. Usually, gen-
eral problems are more difficult to solve that most of their particular cases. It was
therefore expected that processing fuzzy data is, in general, more computationally
difficult than processing interval data – and indeed, Zadeh’s extension principle –
a natural formula for fuzzy computations – looks very complicated. Unexpectedly,
Zadeh-motivated 1978 paper by Hung T. Nguyen showed that fuzzy computations
can be reduced to a few interval ones – and in this sense, fuzzy and interval compu-
tations have, in effect, the same computational complexity. In this paper, we remind
the readers about the motivations for (and proof of) this result, and show how and
why in the last 35 years, this result was generalized in various directions.

1 Crisp, Interval, and Fuzzy Uncertainty: A Brief Reminder

Emergence of modern science. In the ancient times, there was no clear separa-
tion between speculations, prejudices, feeling, and confirmed scientific facts. For
example, Johannes Kepler made great discoveries in astronomy – in particular, he
discovered that planets follow elliptical orbits – but he also described horoscopes
predicting people’s fate. Actually, his salaried position required him to deal both
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with astronomy and astrology – which at time, were not clearly separated. Chemists
were analyzing chemical reactions – and at the time, tried different magical incan-
tations that would help them turn matter into gold – and were paid for doing both
chemistry and alchemy.

The situation gradually changed when the need for reliable practical applications
necessitates a clear separation between science – that studies well-established facts
and relations – and semi-poetic imprecise speculations and feeling. The great New-
ton was interpreting the Bible, the grest Goethe came up with his theory of vision –
but these activities were clearly outside what was then considered as science.

Traditional scientific approach to uncertainty. Of course, usually, no matter what
object we study, we do not have a complete knowledge of this object. In science,
knowledge about objects is usually described in terms of numbers. For example, in
mechanics, each object is characterized by its mass, the coordinates of its spatial
location, the components of its velocity, and – if this object is rotating – by a unit
vector describing its rotation axis and by the angular velocity. The fact that we do
not have a complete knowledge means that we do not know the exact values of each
of these quantities x; at best, we know the bounds x and x on the actual value. In
such situations, all we know about the actual (unknown) value x is that this value
belongs to the interval [x,x].

In some cases, we know that some values inside this interval are not possible;
in this case, the set of all possible values of x has a more general form than an
interval. But even in this case, for some real numbers, we are, at this stage, 100%
sure that the value of the physical quantity x cannot be equal to this number, which
for other numbers, we are 100% sure that the value of the quantity x can be equal
to this number. We may have an additional gut feeling that some numbers from
this interval are more possible than others, but such gut feeling was not taken into
account in the traditional scientific paradigm.

Comment. Sometimes, in addition to the interval (or, more generally, set) of possible
values of x, we also have some information about the frequency (probability) with
different numbers from this interval appear in different situations. But again, what
traditional science considered was only guaranteed knowledge about these proba-
bilities.

Need to go beyond traditional scientific paradigm. In the early 1960s, Lotfi
Zadeh, one of the world’s leading specialists in automatic control, a co-author of
the then most widely used book on automatic control, noticed that in many practical
situations, automatic controllers – that take into account all scientific information
about the object of control – perform much worse than human controllers. He real-
ized that human expert controllers use additional knowledge, knowledge which is –
in contrast to what traditional science considered – not precise. The rules describing
this knowledge were usually formulated in terms of imprecise (“fuzzy”) words from
natural language, such as “small”, “approximately”, etc., words that the traditional
scientific approach ignored.



Nguyen’s Result on Fuzzy and Interval Computations 35 Years Later 3

So, instead of ignoring these words, Zadeh proposed to incorporate the corre-
sponding scientific knowledge into the automatic controllers. For this purpose, he
came up with a methodology that he called fuzzy; see, e.g., [1, 12, 17, 21, 22, 26].

Fuzzy methodology: a brief description. For precise (“crisp”) properties like
“smaller than 10”, every number either satisfies this property or does not. Such
properties can be described by describing a set of all the values that satisfy this
property, or, equivalently, by a function µ(x) that assigns, to each possible value x,
the value 1 if x has this property and 0 if not. In mathematics, such a function is
known as a characteristic function.

In contrast, for fuzzy words like “small”, for some values x, experts are not 100%
sure whether x is small or not, they are sure to some degree. We want to process such
information in a computer. Computers were not designed to process words from
natural languages, they were designed to process numbers. So, to be able to use
computers to process expert information, we need to be able to describe this degree
of confidence by a number. A natural way to do it is to ask the expert to mark his/her
degree on a scale from 0 to 1, where 1 means absolute confidence, and 0 means no
confidence at all. Alternatively, we can use a scale from 0 to 10 or from 0 to 5, and
then divide the result, correspondingly, by 10 or by 5. This is how students evaluate
their instructors, this is how we evaluate the quality of different services. Thus, to
describe a property, we need to describe a function that assigns, to each value x, a
degree µ(x)∈ [0,1] to which each value x satisfies the given property (e.g., is small).
The corresponding function is known as a membership function or, alternatively, as
a fuzzy set.

An additional complication comes from the fact that many rules describe what
happens when several properties are satisfied. For example, a rule may describe
what to do if the temperature t in a chemical reactor is slightly below the desired
one and the pressure p is slightly higher than desired. We can, in principle, ask
the expert to mark the degrees µtemp(t) corresponding to different values t and the
degrees µpress(p) corresponding to different values p, but what we real need is, for
all possible pairs (t, p), to estimate the degree of the above “and”-statement. It may
be still possible to ask the expert about all such pairs, but what if there are 5 inputs?
Ten inputs? Even if we consider only 10 different values for each quantity, this
would still make 105 or even 1010 combinations – and we cannot ask that many
questions to an expert.

Since we cannot always directly elicit the expert’s degree of certainty in an “and”-
statement – of the type A&B – we need to be able to estimate this degree based on
whatever information we have – i.e., based on the degrees of certainty a and b of
the statements A and B. The algorithm for this estimation is known as an “and”-
operation (or, for historical reasons, a t-norm); we will denote it by f&(a,b). The
most widely used “and”-operations are min(a,b) and a ·b.

Similarly, we need an algorithm to estimate the degree of certainty of A∨B; such
an algorithm is known as an “or”-operation, or a t-conorm; we will denote it by
f∨(a,b). The most widely used “or”-operations are max(a,b) and a+ b− a · b. To
describe the degree of certainty of a negation ¬A, we need an algorithm which is
known as a negation operation f¬(a). The mostly widely used negation operation
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is f¬(a) = 1− a. Because of the important role of these logical operations, fuzzy
methodology is often called fuzzy logic methodology.

2 Data Processing under Interval and Fuzzy Uncertainty:
Reminder

Need for data processing. In many real-life situations, we are interesting in quan-
tities which cannot be measured directly – e.g., in future values of some quantities.
Since we cannot measure these quantities y directly, we need to estimate y based on
available information – i.e., based on the known values x̃1, . . . , x̃n of related quanti-
ties x1, . . . ,xn. We will denote the estimating algorithm by y = f (x1, . . . ,xn).

Need to take uncertainty into account. The values x̃i come either from measure-
ments or from expert estimates. In both cases, the available value x̃i is somewhat
different from the actual (unknown) value xi of the corresponding quantity. As a
consequence, even if the relation y = f (x1, . . . ,xn) is exact, the resulting estimate
ỹ = f (x̃1, . . . , x̃n) for y is, in general, different from the actual value y of the quantity
of interest. To make decisions, we need to know how accurate is this estimate.

Case of interval uncertainty. In the interval case, for each quantity xi, the only
thing we know is the interval xi = [xi,xi] that contains xi. So, the set y of all possi-
ble values of y is the set of all possible values f (x1, . . . ,xn) when each xi is in the
corresponding interval:

y = { f (x1, . . . ,xn) : xi ∈ xi for all i}.

In mathematical terms, the right-hand side of this equality is known as the range of
the function f (x1, . . . ,xn); it is usually denoted by f (x1, . . . ,xn).

For many important classes of problems, there are feasible algorithms which
either compute this range or at least compute a reasonable approximation for this
range; see, e.g., [11, 16, 19]. The problem of computing this range is known as the
problem of interval computation.

Comment. While there exist efficient interval computation algorithms for many
classes of problems, it should be mentioned that, in general, the problem of comput-
ing this range is NP-hard; see, e.g., [15]. This means, in effect, that unless P = NP
(which most computer scientists believe to be not true), no feasible algorithm is
possible that would always compute the exact range.

Case of fuzzy uncertainty. What if for each i and for each xi, we only know the
degree µi(xi) to which this value xi is possible? In this case, the value y is possible
if and only if for some tuple (x1, . . . ,xn) for which y = f (x1, . . . ,xn), the value x1 is
possible, and the value x2 is possible, and . . .

We know the degree µi(xi) to which xi is possible. So, to get the degree µ(y) to
which y is possible, we need to apply an “and”-operation for “and” and an “or”-
operation for “for some” (which is nothing else but “or”). Thus, we get
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µ(y) = f∨{ f&(µ1(x1), . . . ,µn(xn)) : y = f (x1, . . . ,xn)}.

Here, the “or”-operation is applied to infinitely many values. For most “or”-
operations, e.g., for f∨(a,b) = a+ b− a · b, if we apply this operation to infinitely
many positive terms, we get 1. The only exception is when we use f∨(a,b) =
max(a,b). In this case, the above expression takes the following form:

µ(y) = sup
(x1,...,xn):y= f (x1,...,xn)

f&(µ1(x1), . . . ,µn(xn)). (1)

In particular, for the most commonly used “and”-operation f&(a,b) = min(a,b), we
get:

µ(y) = sup
(x1,...,xn):y= f (x1,...,xn)

min(µ1(x1), . . . ,µn(xn)). (2)

The formula (2) was first proposed by Zadeh and is therefore called Zadeh’s exten-
sion principle.

3 Nguyen’s Theorem: Brief History, Formulation, and the Main
Idea Behind the Proof

What was expected. The formulas (1) and (2) looks much more complex than the
corresponding interval formulas – which are, of course, a particular case of the fuzzy
formulas when all fuzzy sets are crisp, i.e., when for each i and each xi, we have
µi(xi) = 1 or µi(xi) = 0. This is a known phenomenon – that general computational
problems are usually more complex than their particular cases. For example, solving
linear and quadratic equations is straightforward, we have explicit formulas for these
solutions, but solving general polynomial equations is complicated. Solving systems
of linear equations is feasible, but already solving systems of quadratic equations is
NP-hard.

It was therefore expected that fuzzy computation – i.e., fuzzy data processing – is
much more complex than interval computation. Lotfi Zadeh himself understood the
complexity of this problem, and realized that to make fuzzy methodology practically
useful, it is important to develop efficient algorithms for at least some cases of fuzzy
computing.

Nguyen’s theorem: unexpected result. In 1975, Professor Zadeh invited Hung
T. Nguyen, a promising recent PhD in Mathematics and Statistics from University
of Paris, to spend two years at the University of California-Berkeley – to have a
mathematician’s look at fuzzy theory. For this purpose, he asked Hung T. Nguyen
to read his papers and related papers of others – including a paper by a Japanese
researcher visiting Berkeley on the computational aspects of fuzzy computing.

Hung T. Nguyen started working on this topic and came up with a general result
about fuzzy computation, published in [20]. To explain this result, we need to recall
the notion of an α-cut. The notion was known in fuzzy methodology because in
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many situations, we need to make a decision – e.g., whether to perform a certain
action or not. When the satellite deviates a little bit from the desired trajectory, we
need to decide whether we should use the precious fuel to correct its trajectory or
not yet. If a chemical process starts deviating a little bit from the desired parameter,
we need to decide whether to apply an appropriate control – e.g., shut down the
reactor.

If we know for sure that a sufficiently large deviation took place, then yes, we
should perform the corresponding action. But what if we can only conclude that this
deviation occurred with some degree of confidence d? In this case, we need to select
some threshold value α ∈ (0,1], and perform the action if our degree d is larger than
or equal to α: d ≥ α . Correspondingly, when this degree depends on the value of
some quantity x (d = µ(x)), then we perform the action if and only if µ(x)≥ α .

For each fuzzy set µ(x), the corresponding set {x : µ(x) ≥ α} is known as the
α-cut of this fuzzy set. What Nguyen proved was that under reasonable conditions,
the α-cut y(α) of y is equal to the range of the function f (x1, . . . ,xn) when each xi
is in the α-cut xi(α) of xi:

y(α) = f (x1(α), . . . ,xn(α)). (3)

The value α corresponds to an expert’s degree of confidence in a statement. An
expert cannot estimate his/her degree with accuracy higher than 0.1. Thus, it is suf-
ficient to consider only values α differing by 0.1: 0, 0.1, 0.2, . . . , 1.0. So, fuzzy
computation can reduced to a few cases of interval computation.

This theorem is the main tool behind fuzzy computing. This theorem shows that
there is no need to come up with new algorithms for fuzzy computing – it is suffi-
cient to use well-developed interval algorithms, and this is exactly what most prac-
titioners are doing.

Every year, there are sessions on interval computations at fuzzy conferences –
and sessions on possible fuzzy applications at interval conferences.

Such situations happen. The fact that a more general case turned out to be no more
computationally complex than a particular case was unexpected, but such situations
happened before. For example, to come up with equations of General Relativity
that describe gravity – i.e., forces caused by masses (= energy) – Einstein came up
with a completely new idea of curved space-time; see, e.g., [5, 18, 25]. The gen-
eral feeling was that without this new physical idea, we cannot come up with a
reasonable explanation for these complex nonlinear partial differential equations.
However, later, it turned out that the same equations appear if we consider a simple
tensor field in flat (not-curved) space time, by making a natural-for-gravity assump-
tion that the source of this field includes both the energy-momentum of other fields
and the energy-momentum of the gravity field itself; see, e.g., [8, 9, 10, 18, 13].

In physics. there have been many examples of this type – when a seemingly com-
pletely revolutionary theory turned out to be derivable from the previous physics.
For example, even the notion of the black hole – which was originally perceived as
specific for general relativity – follows already from Newtonian mechanics. Indeed,
in Newtonian mechanics, for each celestial body, there is an escape velocity – so
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that any object travelling slower than that will fall back to the body. If this escape
velocity exceeds the speed of light – the largest possible speed – then nothing can
leave this body, including light. Even the thresholds for when the body with a given
mass and radius becomes a black hole are very similar in General Relativity and in
Newton’s mechanics; see, e.g., [5, 18, 25].

From this viewpoint, it is not very surprising that the general fuzzy computing
was reduced to a simpler interval computing case. Not surprising but still not triv-
ial, since each such reduction requires mathematical and physical ingenuity. It took
almost 40 years to show that General Relativity can be derived from field theory, it
took several centuries after Newton to conclude that black holes can exist in New-
tonain physics, and it took more than 10 years to realize that fuzzy computation can
be reduced to interval computations.

So how is this theorem proved: main idea. According to the formula (2), the value
µ(x) is the maximum of several values. When is the maximum of several numbers
larger than or equal to α? When one of these numbers if larger than or equal to α:

µ(y)≥ α ⇔

∃x1, . . . ,xn (y = f (x1, . . . ,xn) = y& min(µ1(x1), . . . ,µn(xn))≥ α). (4)

Thus,

y∈ y(α)⇔∃x1, . . . ,xn (y= f (x1, . . . ,xn) = y& min(µ1(x1), . . . ,µn(xn))≥α). (5)

When is the smallest of n numbers larger than or equal to α? When all of them are
larger than or equal to α:

min(µ1(x1), . . . ,µn(xn))≥ α ⇔ µ1(x1)≥ α & . . . & µn(xn)≥ α. (6)

By definition of the α-cut, this means that

min(µ1(x1), . . . ,µn(xn))≥ α ⇔ x1 ∈ x1(α)& . . . &xn ∈ xn(α). (7)

Thus, the value y belongs to the α-cut y(α) if and only if there exist values x1, . . . ,xn
for which y = f (x1, . . . ,xn) and each xi belongs to the corresponding α-cut xi(α).
In other words, the set y(α) is indeed equal to the range f (x1(α), . . . ,xn(α)). This
is exactly what the theorem says.

Important warning. What we described is an idea, but not the full proof. It would
be a full proof if we had the maximum of finitely many terms – but in our case, we
have infinitely many terms, and it is known that in this case, the supremum may be
larger than or equal to α without any of the maximized numbers being larger than
or equal to α . For example, the supremum of the values 1− 2−n corresponding to
n = 0,1,2 . . . is equal to α = 1, while all the values 1−2−n are smaller than 1.

Thus, to have a real proof, we need to guarantee that the supremum is attained
for some tuple (x1, . . . ,xn). This can be guaranteed, e.g., if all the membership func-
tions µi(xi) are continuous and all the α-cuts are compact – which for continuous
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functions of real numbers is equivalent to requiring that all the α-cuts are bounded,
a requirement which is true for most practical membership functions.

4 Extensions of Nguyen’s Theorem: A Brief Overview

Extensions beyond real numbers. The above proof does not depend on the fact
that xi are real numbers:

• they could be vectors, tuples;
• they could be, more generally, elements of a general metric (or even general

topological) space.

Such extensions have indeed been published; see, e.g., [2, 3, 4].

Extensions to interval-valued, type-2, and more general fuzzy sets. In the above
description, we implicitly assumed that an expert can always describe his/her degree
of confidence ny an exact number. In reality, however, just like people are not 100%
confident about their estimates, they are also not 100% confident about their degrees
of confidence. A natural idea is to allow an interval of possible degrees (this leads to
interval-values fuzzy sets) or even to fuzzy sets describing each degree (this leads to
general type-2 fuzzy sets). In both cases, we face a natural computational question:
how to propagate such type-2 uncertainty through a data processing algorithm?

It turned out that such computations can also be reduced to interval computations;
see, e.g., [14].

Extensions to other t-norms. In the above text, we considered the case when we
use f&(a,b) = min(a,b). What if we use a different t-norm? Several extensions of
Nguyen’s theorem to different t-norms have been proposed; see, e.g., [7].

It turns out that for other t-norms, we can also have an efficient data processing
algorithm [23] – although this time the reduction is not to interval algorithms but to
algorithms from convex optimization; see, e.g., [24].

Other extensions. An interesting and promising extension was proposed in [6],
where the authors represented a fuzzy number – a fuzzy generalization of an interval
– as an interval [ℓ(α),r(α)] formed by two what they called gradual numbers ℓ(α)
and r(α): mappings from (0,1] to the real line. The left gradual number ℓ(α) is
formed by lower endpoints of the α-cut intervals, while the right gradual number
r(α) is formed by its right end-points, so that [ℓ(α),r(α)] = x(α).

Each of these gradual numbers may not have a clear meaning, but this subdivision
seems to simplify computations – just like in physics, while it is not possible to
actually separate, e.g., a proton into three quarks, many computations are simplified
if we represent a proton this way [5, 25].

We hope that other fruitful extensions will occur.
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