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Why Moments (and Generalized Moments)
Are Used in Statistics and
Why Expected Utility
Is Used in Decision Making:
A Possible Explanation

R. Noah Padilla and Vladik Kreinovich

Abstract Among the most efficient characteristics of a probability distribution are
its moments and, more generally, generalized moments. One of the most adequate
numerical characteristics describing human behavior is expected utility. In both
cases, the corresponding characteristic is the sum of results of applying appropriate
nonlinear functions applied to individual inputs. In this paper, we provide a possible
theoretical explanation of why such functions are efficient.

1 Formulation of the Problem

In this paper, we provide a new explanation of two seemingly unrelated phenomena:

• that moments (and, more generally, generalized moments) are effectively used in
statistics; see, e.g., [8], and

• that expected utility is effectively used in decision making; see, e.g., [1, 2, 3, 4,
5, 6, 7].

Before we provide the corresponding explanations, let us first briefly describe these
two phenomena.

Moments and generalized moments: a brief reminder. One of the most frequent
ways to characterize a random variable x is to use moments – i.e., expected values
E[xk] of some integer power of this variable – and, more generally, generalized
moments, i.e., expected values E[ f (x)] of some function of the random variable.

For each random quantity q, its expected value is equal to the limit of its average
observations q1, . . . ,qn, . . .:
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E[q] = lim
n→∞

q1 + . . .+qn

n
.

By definition of the limit, this means that when n becomes larger and larger, the
average

q1 + . . .+qn

n
gets closer and closer to the expected value. Thus, a reasonable way to estimate
the mean based on the observations qi is to take the arithmetic average of all the
observed values:

E[q]≈ q1 + . . .+qn

n
.

In particular, to estimate the value E[ f (x)] of the generalized moment (or, in par-
ticular, of a usual moment corresponding to f (x) = xk) based on the observations
x1, . . . ,xn, it is reasonable to use the corresponding arithmetic average

E[ f (x)]≈ f (x1)+ . . .+ f (xn)

n
. (1)

Alternative formulas for moments and generalized moments. In some cases, we
have limited number of values v1, . . . ,vk (k ≪ n) that the variables xi can take. In
this case, each term f (xi) in the sum

s def
= f (x1)+ . . .+ f (xn) (2)

is equal to one of the k values f (v j), 1 ≤ j ≤ k. In such cases, we can simplify the
formula (2) by grouping together terms equal to f (v1), terms equal to f (v2), etc.
Then, we get

s = f (v1)+ . . .+ f (v1) (n1 times)+ . . .+ f (vk)+ . . .+ f (vk) (nk times),

where n j denotes the number of terms f (xi) which are equal to f (vk), or, equiva-
lently,

s = f (x1)+ . . .+ f (xn) = n1 · f (v1)+ . . .+nk · f (vk).

Substituting this expression into the formula (1), we conclude that

E[ f (x)]≈ n1

n
· f (v1)+ . . .+

nk

n
· f (vk). (3)

Here, the ratio
n j

n
is the frequency with which the value v j appears in the obser-

vations, i.e., in effect, the probability p j of this value – to be more precise, the
probability is defined as the limit of such a frequency, but since we are considering
large n, probability and frequency are approximately the same. Thus, the formula
(3) takes the form

E[ f (x)]≈ p1 · f (v1)+ . . .+ pk · f (vk). (4)
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Expected utility: a brief reminder. It is known – see above references – that a
rational person, when making a decision, should maximize the value of a special
expression known as expected utility

u def
= p1 ·u(v1)+ . . .+ pk ·u(vk), (5)

where:

• v1, . . . ,vk are possible consequences of the selected action,
• p j is the (subjective) probability of getting an alternative v j, and
• u(v j) is a number – called utility – that characterize the value of the alternative

v j to the decision maker.

Comment. The main use of expected utility is to decide which alternative is better,
i.e., which decision we should make. From this viewpoint, what is important are
not the numerical values (5) themselves, but which values are larger and which are
smaller. From this viewpoint, instead of the values u, we could use the values g(u)
for any increasing function g(u) – since for an increasing function u < u′ if and only
if g(u)< g(u′).

Is there a common explanation for these two formulas? There exist explanations
for both formulas (4) and (5), explanations based on different ideas; see, e.g., the
above references. However, the fact that the expressions (4) and (5) are very similar
– in both cases, we have a linear combination of the values of some function ( f (v) in
the first case, u(v) in the second case) applied to different values v1, . . . ,vk – made
us think that there also be a joint explanation for these two seemingly unrelated
formulas. In this paper, we provide a possible common explanation.

2 Main Ideas Behind Our Explanation

In many practical problem, computation time is a big issue. Nowadays, we get a
lot of data, and we have a lot of computational ability. However, still, computation
time remains a big issue. For example, with numerous weather sensors almost every-
where, we get a lot of data that enables us to predict tomorrow’s weather reasonably
well – but because of the huge amount of data and, as a result, a huge amount of
computations, the only way to predict weather is to use high-performance comput-
ers, where a large number of processors are working in parallel, and even on such
computers, weather prediction takes hours (and became possible only after special
time-saving algorithms were implemented).

In many other problems we still cannot perform computations in desired time.
For example, in principle, it is possible to predict somewhat accurately in what di-
rection a potentially deadly tornado will go in the next 15 minutes – but the resulting
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computations so far require much longer than 15 minutes and are, therefore, practi-
cally useless. From this viewpoint, it is desirable to come up with computations that
can be performed as fast as possible.

Which computations are the fastest? Of course, to make computations faster, we
need to parallelize computations as much as possible. On a parallel computer, first,
all the processors perform one computation step, then they all perform another step,
etc. To minimize the overall computation time:

• we need to minimize the number of steps, and
• we need to minimize the time needed for each step – i.e., in other words, perform,

at each step, computations which are as fast as possible.

Which computational steps are the fastest? When we process numbers, compu-
tation on a deterministic computer means, in effect, computing the value of some
function of an input. Overall, the function we compute is a composition of functions
computed on consequent steps.

Among different functions of several variables, linear functions, i.e., functions of
the type

f (x1, . . . ,xn) = a0 +a1 · x1 + . . .+an · xn (6)

are the easiest (thus fastest) to compute.
However, if we only use linear computational steps, then, due to the fact that

a composition of linear functions is linear, we will only be able to compute linear
functions, while in real life, many processes are nonlinear. Thus, in addition to linear
computational steps, we also need some nonlinear ones.

In general, the more inputs a function has, the longer it takes to process all these
inputs and to compute the value of this function. From this viewpoint, among all
nonlinear functions, the fastest to compute are nonlinear functions of one vari-
able y = s(x). Thus, fastest computations should consist of two types of compu-
tational steps:

• linear steps, on which we compute a linear combination (6) of the inputs, and
• nonlinear steps, on which we compute the value of a function of one variable

y = s(x).

To make computations fast, consequent computational steps must be of differ-
ent types. Indeed, if we have a linear step followed by a linear step, then all these
two steps compute is a composition of two linear functions – which, as we have
mentioned, is also a linear function. Thus, instead of these two steps, we can have a
single linear step, in which we directly compute this composition.

Similarly, if we have a nonlinear step y = s(x) followed by another nonlinear step
z = s′(y), then all these two steps compute is a composition z = s′(s(x)) of these two
functions – i.e., also a nonlinear function of one variable. Thus, instead of these
two steps, we can have a single nonlinear step, in which we directly compute this
composition.
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So, in general, to make computations faster, we need to make sure that conse-
quent computational steps are of different types, i.e., that:

• a linear computational step is followed by a nonlinear one, and
• a nonlinear computational step is followed by a linear one.

What can we compute with the smallest possible number of computational
steps. Now that we know which are the fastest computational steps, let us ana-
lyze which functions can be computed by using the smallest possible number of
computational steps.

The smallest possible number of computational steps is 1. In one step, we can
compute either a linear function or a function of one variable. In both statistics and
decision making applications, we need to process several numbers:

• in the statistics cases, we need to take into account (and thus, to process) several
observations x1, . . . ,xn, and

• in the decision making cases, we need to take into account (and thus, to process)
several different possible consequences v1, . . . ,vk of the analyzed decision.

Thus, if we limit ourselves to a single computational step, we cannot use a function
of one variable. Therefore, we have to use a linear function. In case of the statistical
analysis, this corresponds to using the first moment

E[x]≈ x1 + . . .+ xn

n
= p1 · v1 + . . .+ pk · vk,

for some values p j. In case of decision making, this corresponds to having utility
proportional to the numerical value v j of each alternative:

u = p1 · v1 + . . .+ pk · vk.

In line with the general fact that some real-life dependencies are nonlinear, both
in statistical analysis and in decision making, we may need to use nonlinear func-
tions to get a more adequate description. In this case, we need to use at least two
computational steps.

Two stages: possible options. Due to the above, these stage must be different. So,
we have two options:

• the first option is to have a linear stage followed by a nonlinear stage, and
• the second option is to have a nonlinear stage followed by a linear stage.

Two stages: first option. If the first stage is linear and the following one nonlinear,
then, in general, we compute a function

f

(
a0 +

k

∑
j=1

a j · v j

)
.
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Comparing such values is equivalent to comparing the corresponding linear combi-

nations a0 +
k
∑
j=1

a j · v j, and we know that such a linearized approach does not work

for many real-life phenomena.

Two stages: second option. If the first stage is nonlinear and the second one lin-

ear, then we compute expressions a0 +
k
∑
j=1

a j · f j(v j). This provides a more general

opportunities for comparison.
In particular, if a priori, we have no reason to prefer some j’s, then it makes sense

to use the same nonlinear function f j(v) = f (v) to process all the inputs. Thus, we
get the expression

a0 +
k

∑
j=1

a j · f (x j). (7)

This expression is exactly what we wanted to explain. The formula (7) is exactly
what is used when we use generalized moments or expected utility. Thus, we have
indeed explained the desired expressions.
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