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Localized Learning: A Possible Alternative to
Current Deep Learning Techniques

Javier Viaña, Kelly Cohen, Anca Ralescu, Stephan Ralescu, and Vladik Kreinovich

Abstract At present, the most efficient deep learning technique is the use of deep
neural networks. However, recent empirical results show that in some situations, it is
even more efficient to use “localized” learning – i.e., to divide the domain of inputs
into sub-domains, learn the desired dependence separately on each sub-domain, and
then “smooth” the resulting dependencies into a single algorithm. In this paper, we
provide theoretical explanation for these empirical successes.

1 Formulation of the Problem

Deep learning is successful but it is not a panacea: sometimes it cannot be used.
In many problems, deep learning techniques – see, e.g., [4] – provide the most ef-
ficient learning: they lead to the most accurate approximation to the real-life phe-
nomena.

This does not mean, of course, that no other machine learning techniques are
needed: in some other situations, alternative machine learning techniques are needed.
For example, it is known that deep learning requires a large amount of data and a
lot of computation time. So, if we do not have enough data and/or we do not have
enough time to train the network, we have to use other machine learning tools.

Even when deep learning can be used, other methods are sometimes better.
Interestingly, it turns out that in some situations, even when there is enough data
and enough time to use deep learning, alternative methods still lead to more accurate

Javier Viaña, Kelly Cohen, Anca Ralescu, and Stephan Ralescu
University of Cincinnati, Cincinnati, Ohio 45219, USA
e-mail: vianajr@mail.uc.edu, cohenky@ucmail.uc.edu, ralescal@ucmail.uc.edu,
ralescs@mail.uc.edu

Vladik Kreinovich
Department of Computer Science, University of Texas at El Paso, 500 W. University
El Paso, Texas 79968, USA, e-mail: vladik@utep.edu

1



2 Javier Viaña, Kelly Cohen, Anca Ralescu, Stephan Ralescu, and Vladik Kreinovich

results; see, e.g., [12, 13]. Specifically, these papers use the following “localized”
learning idea:

• we divide the area of possible values of the input into several sub-domains,
• we learn the dependence “locally” – i.e., separately on each sub-domain, and

then
• we combine the resulting dependencies by making smooth transitions between

them – this can be naturally done, e.g., by using fuzzy techniques (see, e.g.,
[1, 5, 7, 9, 10, 14]).

Comment. Of course, it is important to make sure that the comparison between dif-
ferent techniques is fair. For each machine learning technique, the more parameters
we use, the more accurate results we get. So, the only way to claim that one tech-
nique is more accurate is:

• either to compare variants of these two methods that use the same number of
parameters,

• or, alternatively, to show one of the techniques requires fewer parameters to reach
the same approximation accuracy.

The second alternative is exactly how the comparison was performed in [12, 13].

A natural question. Empirically, the results from [12, 13] are interesting, but in
view of the current successes of deep learning, these results are somewhat unex-
pected. So, a question naturally arises:

Why are these localized techniques so much more accurate than deep learning?

What we do in this paper. To answer this question, we first ask a related question:

Why are deep learning techniques so successful?

To answer this auxiliary question, we first go even further and ask:

Why are neural networks so successful in the first place?

Once we answer these two questions and find out what are the strong points of neural
networks (including deep ones), it will also become clear what are the limitations
of neural networks, and why shallow localized networks can, in some important
practical situations, overcome these limitations.

In line with this plan:

• in Section 2, we analyze why neural networks are successful in the first place,
• in Section 3, we focus on successes of deep learning, and
• finally, in Section 4, we provide a possible explanation of why localized methods

are sometimes better.

Comment. Most main ideas described in Sections 2 and 3 first appeared in [6]; ideas
described in Section 4 are completely new.
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2 Why Neural Networks: A Theoretical Explanation

Why do we need a theoretical explanation. Neural networks appeared as a way
to simulate how we humans solve problems: in our brains, signals are processed by
neurons. The fact that we are the result of billions of years of improving evolution
makes researchers believe that many biological processes are optimal (or at least
close to optimal), so simulating them makes perfect sense.

On the other hand, there is a difference between computers and us: computers are
built from different materials than our brains, they operate on a different size and
time scales, so an optimal solution for a computer may be different from the optimal
solution for a brain. For example, birds have wings to fly, and airplanes – that, to
some extent, simulate the birds – also have wings, but while for the birds, flapping
the wings is the optimal flying strategy, airplane wings do not flap at all.

To design an airplane, it is not enough to copy the birds, we also need to perform
some theoretical analysis. Similarly, to decide which features should be used in
computing, it is desirable to provide a theoretical analysis.

The main objective of the original neural network: computation speed. Artifi-
cial neural networks appeared when the computation speed of computers was sev-
eral orders of magnitude lower than now. This relatively slow speed was the main
bottleneck, preventing computers from solving many practical problems. So, the
question arose: how can we make computers faster?

Main idea: parallelism. If a person has a task that takes too long – e.g., cleaning
several offices, then to speed it up, a natural idea is to ask for help. If several people
work on the same task, this task gets performed much faster. Similarly, if it takes too
long for one processor to solve a problem, a natural idea is to have many processors
working in parallel:

• on the first stage, all the processors perform some tasks,
• after that, on the second stage, processors use the results of the first stage to

perform additional computations, etc.

To decrease the overall computation time, we need to minimize the number of stages
(also called layers), and to make each stage as fast as possible.

Linear vs. nonlinear functions. We consider deterministic computers, where the
result is uniquely determined by the inputs. In mathematical terms, this means that
on each stage, what each processor computes is a function of the inputs. In these
terms, to select fast stages, we need to decide which function are the fastest to com-
pute.

Functions can be linear or nonlinear. Of course, linear functions are easier – and
thus, faster – to compute. However, we cannot have processor computing only linear
functions – because in this case, all the computer will compute will be compositions
of linear functions, and such compositions are themselves linear. On the other hand,
many real-life dependencies are nonlinear.

Thus, in addition to processors computing linear functions, we also need proces-
sors computing nonlinear functions.
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Which non-linear functions are the fastest to compute? In general, the fewer
variables the function has, the faster it is to compute. Thus, the fastest to compute
are nonlinear functions with the smallest possible number of inputs: namely, a single
input.

Resulting computation scheme. We thus arrive at a scheme at which at each stage,
processors compute:

• either a linear function y = a0 +
n
∑

i=1
ai · xi

• or a nonlinear function of one variable y = s(x); such a function is known as an
activation function.

From the viewpoint of minimizing computation time, it makes no sense to have
two linear stages one after another, since the composition of two linear functions
is also linear – so we can replace these two stages by a single stage. Similarly, it
makes no sense to have two nonlinear stages one after another, since a composition
s1(s2(x)) of two functions of one variable is also a function of one variable. Thus,
linear and nonlinear stages must interleave.

It turns out that both 2-stage schemes:

• a linear (L) stage followed by a nonlinear (NL) stage, i.e., a sequence L–NL, and
• a nonlinear stage followed by a linear stage: NL–L

cannot accurately represent general continuous functions on a bounded domain –
neither of them can even represent the function f (x1,x2) = x1 · x2 with sufficient
accuracy. However, both 3-stage schemes L–NL–L and NL–L–NL can approximate
any function. Since NL takes longer than L, the scheme L–NL–L is clearly the
fastest.

In this scheme:

• First, each processor k (k = 1, . . . ,K) transforms the inputs xi into their linear
combination yk = wk1 · x1 + . . .+wkn · xn −wk0.

• On the next stage, a nonlinear transformation is applied to each yk, so we compute
the values zk = sk(yk).

• Finally, in the final third stage, we compute a linear combination

y =W1 · z1 + . . .+WK · zK −W0,

i.e.,

y =
K

∑
k=1

Wk · sk

(
n

∑
i=1

wki · xi −wk0

)
−W0. (1)

This is exactly the formula for the traditional 3-layer neural network.
Usually, in this network, all the processors (called neurons) use the same activa-

tion function: s1(x) = . . .= sK(x) = s(x). Then, the formula (1) takes the following
form:

y =
K

∑
k=1

Wk · s

(
n

∑
i=1

wki · xi −wk0

)
−W0. (2)
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Comment. In most cases, traditional neural networks use a so-called sigmoid activa-
tion function

s(x) =
1

1+ exp(−x)
.

3 Need to Go Beyond Traditional Neural Networks and Deep
Learning

At present, computation speed is no longer the major concern, accuracy is.
While several decades ago, when neural networks were invented, computational
speed was the main bottleneck, at present, computers are much faster.

The main concern now is not the speed, but how accurately we can perform
the computations – how accurately we can predict weather, how accurately we can
estimate the amount of oil in a given oilfield, etc.

How to increase accuracy. The more parameters we use, the better we can fit the
data and thus, the more accurate the model.

From this viewpoint, the larger the number K of the neurons, the more parameters
we have in the formula (2), and thus, the more accurately we can represent any given
function.

Limitation. However, there is a serious limitation in this increase of number of
options – caused by the fact that any perturbation of K neurons does not change the
expression (2).

There are K! such permutations – which, for large K, is a huge number. So, while
we have many possible combinations of the coefficients wki and Wk, there are much
fewer (K! times fewer) different functions represented by these combinations.

How to overcome this limitation. To overcome this limitation, a natural idea is to
decrease the number K of neurons in each layer. To preserve the same number of
parameters, we therefore need to place some neurons in other layers. Thus, instead
of the original 3-layer configuration L–NL–L, we get a multi-layer configuration

L–NL–L–NL–. . .

This is what a deep neural network is about. In a nutshell, this multi-layer scheme
is exactly what is known as a deep neural network.

There are also some other differences: e.g., deep learning mostly uses a different
activation function s(x)=max(x,0) known as rectified linear unit (ReLU, for short).
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4 Beyond Deep Learning, Towards Localization

Let us get back to estimating accuracy. As we have mentioned, at present, the
main objective in most computational problems is accuracy. In the previous section,
we explained how transition to deep neural networks helps increase accuracy. But
maybe there are other ways to do it?

To answer this question, let us analyze the problem of decreasing accuracy some-
what more deeply.

How to estimate accuracy with which we know the parameters: general re-
minder. Suppose that to “train” the system, i.e., to find the values of the correspond-
ing parameters, we can use M measurement results, with an average accuracy ε .

Let us denote by P the overall number of parameters in the model. Each measure-
ment result means one equation in which the parameters are unknowns. So, if we
take all measurement results into account, we have M equations with P unknowns.
In general, if we have fewer equations than unknowns, then we cannot uniquely de-
termine all the unknowns, some of them may be set arbitrarily – so we do not need
all P parameters. Thus, we must have M ≥ P – and usually, we have M ≫ P.

If we had exactly P observations, then we could determine each parameters with
accuracy proportional to ε . Since we have a duplication – i.e., we have more ob-
servations than unknowns – we can use this duplication to make the results more
accurate. In general, according to statistics, if we have d measurements to deter-
mine a parameter, the accuracy increases by a factor

√
d; see, e.g., [11].

In our case, we have M measurements for P paremeters, so, on average, we have
d =M/P measurements per parameter. Thus, we can determine each parameter with
accuracy proportional to

δ =
ε√
M/P

=

√
P
M

· ε.

What is the accuracy of the result of using this model. The value δ describes the
accuracy with which we know each parameter. These accuracies affect the accuracy
of prediction. In general, each predicted values depends on all P parameters. each
parameters contributes accuracy ∼ δ to the prediction result. It is reasonable to
assume that these P contributions are independent. Thus, according to statistics [11],
the overall effect of all these contributions is proportional to

√
P ·δ .

How can we make predictions more accurate. To make the results more accu-
rate, we need to decrease the number of parameters on which each predicted value
depends.

If each predicted value depend only on P′ ≪ P parameters, then the overall
inaccuracy of the prediction is proportional to

√
P′ · δ , which is much smaller

than
√

P ·δ .

In other words, we need localization. To make sure that P′ ≪ P, we need to make
sure that each predicted value depends only on a few of the parameters. Thus, each
predicted value f (x1, . . . ,xn) depends only a few parameters. In other words, the list
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of all P parameters should be divided into sublists (maybe intersecting), so that in
each sub-domain of the domain of all possible inputs x = (x1, . . . ,xn) we have an
expression depending only on a few parameters.

In other words, we have separate few-parametric expressions describing the de-
sired dependence on each sub-domain – this is exactly what is usually mean by
localization – that the value of the function in each sub-domain is determined only
by parameters corresponding to this sub-domain. Such a localization is exactly what
is used in [12, 13].

Comments.

• In terms of the function (1), this would mean that instead of using the same
activation function sk(x) = s(x) for all the neurons, as in traditional and in deep
neural networks, we use, in effect, different activation functions sk(x) ̸= sk′(x)
each of which corresponding to a certain sub-domain of the original domain.
When the activation functions are different, there is no K! duplication and thus,
no decrease in accuracy – even when we use a traditional (“shallow”) scheme.

• There are additional advantages in a localized approach:

– it is faster to find the parameters: we need to solve a system with fewer un-
knowns P′ ≪P, and the computations corresponding to different sub-domains
can be performed in parallel, and

– it is easier to modify the solution when the values change in some sub-domain.

• Similar arguments explain why an approximation by splines – where we have
polynomial approximation on each sub-domain and then smooth them out –
leads, in general, to a much better accuracy than a “global” (on the whole do-
main) approximation by a polynomial; see, e.g., [2, 3, 8].

Corollary: shallow or deep. According to the localization idea, each value f (x)
depends only on the parameters corresponding to this point x and neighboring points
x′ ≈ x. In a multi-layer scheme, this means that:

• the signal produced by the last layer depends only on the values from the previous
layer which are close to x;

• these values, in turn, depend only on coefficients of the pre-previous layer which
correspond to locations x′′ which are close to x′, etc.

We have x′ ≈ x, x′′ ≈ x′, etc., i.e., the differences x′ − x, x′′ − x′, etc., are small.
However:

• the difference x′′− x between x′′ and x is the sum of two small differences:

x′′− x = (x′′− x′)+(x′− x);

• if we go back one more layer, then the difference x′′′−x is the sum of three small
differences, etc.

Thus, the more layers we have, the less localized our system, and therefore, the more
parameters we need to take into account to predict each value f (x).
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So, to achieve the best accuracy, we need to use the smallest possible number of
layers – i.e., one non-linear layer, as in traditional neural networks. This is exactly
what is used in [12, 13].

Comment. Interestingly, there is some rudimentary localization effect in deep neural
networks as well.

Indeed, since the corresponding activation function s(x) = max(x,0) is equal to 0
for half of the inputs – namely, for all negative inputs – this means that, on average,
help of the value from the previous layer do not affect the next layer. So, the final
value produced by the last layer is determined only by half of the neurons in the
previous layer. These values, in turn, depend only on the one half of neurons in the
previous layer, etc. So, at least half of the parameters are not used when estimating
each value – and this fact decreases the approximation error in comparison with our
generic estimates.
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