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How the Pavement’s Lifetime Depends on the
Stress Level and on the Dry Density: An
Explanation of Empirical Formulas

Edgar Daniel Rodriguez Velasquez, Vladik Kreinovich, Olga Kosheleva, and
Hoang Phuong Nguyen

Abstract We show that natural invariance ideas explain the empirical dependence
on the pavement’s lifetime on the stress level and on the dry density.

1 First Problem: Dependence on Stress

General description of the phenomenon. Road pavements have a limited lifetime.
As the vehicles pass over the pavement, eventually, the pavement develops fatigue
cracking and needs to be repaired.

Clearly, the larger the load, the larger the stress σ , the larger the strain ε , and
thus, the smaller the number of repetitions N before the fatigue cracking.

Empirical fact. To estimate the expected lifetime of the pavement, we need to know
how the number of repetitions N to fatigue cracking depends on the stress σ , i.e.,
we need to know the following dependence:

N = f (σ). (1)
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Empirically, this dependence is described by the following formula; see, e.g., [2, 3,
5]:

N = N0 · exp(−k ·σ). (2)

This formula applied both to the cases when we analyze how N depends on the
stress measured at the top layer of the pavement and on the stress measured at the
bottom layer of the pavement.

Natural question. How can we explain this empirical formula?

2 Analysis of the Problem

There are several components of stress. In both top-of-pavement and bottom-
of-pavement situations, when we apply the formula (1), we measure the overall
stress, and implicitly assume that all this stress is caused by the traffic. In reality, in
addition to the traffic-related stress, there are other stresses that also contribute to
the eventual deterioration of the pavement. Indeed, even an unused road eventually
develops cracks, due, e.g., to weather-induced stress.

The empirical formula relates only to the traffic-related stress. The additional
stress – e.g., weather-related stress – follows different cyclic patterns than the traffic-
related stress: typically a yearly pattern, or – in case of the rain – a pattern corre-
sponding to each instance of rain.

The number of repetitions of these additional stresses is therefore much smaller
than the number of repetitions caused by the traffic passing over the pavement. Thus,
in comparison with the number of traffic-related repetitions, the number of weather-
related repetitions can be safely ignored.

Strictly speaking, only the traffic-related part σt of the stress – the part that re-
peats many times per day – affects the number of repetitions N. In other words,
strictly speaking, we should look for the formula

N = f (σt). (3)

How can we estimate the traffic-related part of the stress. All we measure is the
overall stress σ , which is equal to the sum σt +σo of the traffic-related stress σt and
the stress σo caused by other factors. So, to estimate the traffic-related stress σt , we
need to subtract, from the measured stress σ , our estimate of the remaining stress
σ0.

Resulting uncertainty in estimating the traffic-related stress. The problem is that
this remaining stress can only be estimated rather approximately. If instead of the
original estimate σ0 we used a slightly different estimate σ ′

0, then, instead of the
original estimate σt = σ −σo, we get a somewhat different estimate

σ
′
t = σ −σ

′
0 = (σ −σo)+(σo −σ

′
o) = σt +δ ,
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where we denoted δ
def
= σo −σ ′

o.
As a result, the exact same situation can be described by two somewhat different

values σt and σ ′
t = σt +δ .

3 Invariance Requirement

Natural invariance idea. Since the exact same situation can be described by two
somewhat different values σt and σt = σ ′

t + δ , it is therefore reasonable to require
that these two somewhat different values lead to the exact same predictions of the
pavement lifetime.

Naive approach to invariance does not work. Of course, we cannot interpret this
requitement literally, as saying that we should have f (σt) = f (σt +δ ): if we impose
this requirement for all σt and all δ , this would lead to a physically meaningless
conclusion that the function f (σt) is a constant, i.e., that the pavement’s lifetime
does not depend on the stress at all.

Solution: using experience of physics. However, the experience of physics shows
that we do not need to take this requirement literally; see, e.g., [4, 6]. For example,
we know that the formula v = d/t describing the velocity v as a function of distance
d and time t does not depend on what measuring unit we select for distance: we can
describe the distance d in meters, or we can describe it in centimeters, resulting in a
different numerical value d′ = 100 ·d.

In this example, invariance does not mean that we always have d/t = d′/t: the
formula v = d/t does remain valid if we use a different unit for measuring distance,
but for this formula to remain valid, we also need to correspondingly change the unit
that we use for measuring velocity: in the above example, from m/sec to cm/sec. In
this case, we get v′ = d′/t, where v′ is the numeric value of velocity in the new units.

From this viewpoint, a reasonable idea is to require that for σ ′
t = σt + δ , the

dependence N = f (σt) should lead to N′ = f (σ ′
t ), where N′ is the description of the

pavement lifetime in correspondingly different units.

But can we use the experience of physics in our case? At first glance, the physics-
motivated idea does not seem to work in our case:

• in contrast to quantities like distance or velocity, where we do need to select a
measuring unit to get a numerical value,

• the number of repetitions N is simply an integer, no measuring is required.

Yes, we can. However, a more detailed analysis shows that the situation is not that
uniquely determined. Indeed, usually, when the vehicle goes over a pavement loca-
tion:

• we can count it as a single stress cycle,
• or we can consider the situation more accurately and take into account that every

time each wheel is passing over, it is a different cycle.
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Thus, depending on how we count it, what was a single cycle in one counting be-
comes several cycles if we consider it differently.

In mathematical terms, this means that we can describe the same traffic history:

• by the number N and
• by a different number N′ = c ·N, where c is the average number of axles per

vehicle.

Different estimates of the number c can lead, in general, to different re-scalings
of N′.

Resulting formulation of the invariance requirement. From this viewpoint, the
above requirement that the dependence N = f (σt) not change if we change our
estimate for σo takes the following form.

For every real number δ ,
there exists an appropriate value c(δ ) – which depends on δ –

such that if N = f (δt), then we should have N′ = f (σ ′
t ),

where σ ′
t = σt +δ and N′ = c(δ ) ·N.

4 Resulting Explanation

Reduction to a functional equation. Substituting the expressions σ ′
t = σt +δ and

N′ = c(δ ) ·N into the formula N′ = f (σ ′
t ), we conclude that c(δ ) ·N = f (σt + δ ).

Since N = f (σt), we thus conclude that

c(δ ) · f (σt) = f (σt +δ ). (3)

Resulting explanation. It is known – see, e.g., [1] – that every measurable solution
to the functional equation (3) has the form f (σ) = N0 · exp(−k ·σ). Thus, we have
indeed explained the empirical formula (2).

5 Second Problem: Dependence on Dry Density

Empirical formula. The formula (2) describes how the pavement lifetime depends
on the stress provided that all other parameters remain constant. The corresponding
values N and k depend on the dry density ρ of the underlying soil. This dry density
is called maximum dry density since when the pavement is built, we try to maximize
the dry density of the compacted soil. The dependence of the lifetime N on stress
and dry density is described by the following formula [5]:

ln(N) = k4 · ln
(

ρ

ω

)
·
(

1− σ

k5 ·UCS

)
, (4)
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for some parameters k4, ω , k5, and UCS, i.e., equivalently, by the formula:

ln(N) = a00 +a01 ·σ +a10 · ln(ρ)+a11 ·σ · ln(ρ), (5)

for some values a00, a01, a10, and a11.
How can we explain this empirical formula?

What we know already. We know, from the previous text, that for each fixed value
ρ , the dependence of N on σ has the form (2), i.e., equivalently, that ln(N) is linear
function of σ :

ln(N) = ln(N0)− k ·σ . (6)

Let us analyze how N depends on the dry density ρ .

Corresponding invariance. We can use different units to measure dry density. If we
replace the original unit with a new unit which is λ times smaller, then all numerical
values get multiplied by λ , i.e., instead of each original numerical value ρ , we get a
new numerical value ρ ′ = λ ·ρ to describe the exact same physical situation.

There is no reason to prefer one specific measuring unit. It is therefore reasonable
to require that the dependence of the lifetime N on the density ρ be the same, no
matter what measuring unit we use. Similarly to the case when we analyzed the
dependence of N on σ , it is reasonable to formulate this requirement in the following
precise terms:

For every real number λ > 0,
there exists an appropriate value c(λ ) – which depends on λ –

such that if N = f (ρ), then we should have N′ = f (ρ ′),
where ρ ′ = λ ·ρ and N′ = c(λ ) ·N.

Reduction to a functional equation. Substituting the expressions ρ ′ = λ · ρ and
N′ = c(λ ) ·N into the formula N′ = f (ρ ′), we conclude that c(λ ) ·N = f (λ · ρ).
Since N = f (ρ), we thus conclude that

c(λ ) · f (ρ) = f (λ ·ρ). (7)

Resulting formula. It is known – see, e.g., [1] – that every measurable solution to
the functional equation (7) has the form f (ρ) = N0 ·ρa for some values N0 and a.
Thus, ln(N) = a · ln(ρ)+ ln(N0), i.e., ln(N) is a linear function of ρ . So:

• for each value ρ , the logarithm ln(N) of the lifetime N = f (σ ,ρ) is a linear
function of σ , and

• for each value σ , the logarithm ln(N) is a linear function of ln(rho).

Thus, the function ln(N) is a bilinear function of σ and ln(ρ), i.e., has the desired
form (5). So, the empirical dependence (5) is also explained.
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