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Why Normalized Difference Vegetation Index
(NDVI)?

Francisco Zapata, Eric Smith, Vladik Kreinovich, and Nguyen Hoang Phuong

Abstract Plants play a very important role in ecological systems – they transform
CO2 into oxygen. It is therefore very important to be able to estimate the overall
amount of live green vegetation in a given area. The most efficient way to provide
such a global analysis is to use remote sensing, i.e., multi-spectral photos taken from
satellites, drones, planes, etc. At present, one of the most efficient ways to detect,
based on remote sensing data, how much live green vegetation an area contains is
to compute the value of the normalized difference vegetation index (NDVI). In this
paper, we provide a theoretical explanation of why this particular index is efficient.

1 Formulation of the Problem

Empirical fact. Plants play a very important role in ecological systems – they trans-
form CO2 into oxygen. It is therefore very important to be able to estimate the over-
all amount of live green vegetation in a given area. The most efficient way to provide
such a global analysis is to use remote sensing, i.e., multi-spectral photos taken from
satellites, drones, planes, etc.

At present, one of the most efficient ways to detect, based on remote sensing
data, how much live green vegetation an area contains is to compute the value of the
normalized difference vegetation index (NDVI):

NDVI def
=

NIR−Red
NIR+Red

,
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where Red and NIR are spectral reflectance measurements corresponding to red and
near infrared (NIR) parts of the spectrum; see, e.g., [1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13,
14].

Related question. Assuming that the amount of life green vegetation can be
uniquely determined by the values Red and NDVI, why this particular combination
of these two values is the most adequate?

What we do in this paper. In this paper, we provide a theoretical explanation for
the formula (1).

2 Towards an Explanation: General Analysis of the Problem

Different scales. When we process data, we process numerical values of the phys-
ical quantities. These numerical values depend not only on the quantity itself, they
depends also on what measuring unit we select, and what starting point we select
for measurement.

For example, to measure temperature, we can use Celsius (C) and Fahrenheit
(F) scales. These scales use different measuring units – a 1-degree difference in the
C scale corresponds to 1.8 degree difference in the F scale. These scales also use
different starting points: 0 degrees on a C scale correspond to 32 degrees on the F
scale.

In general, if we replace the original measuring unit by a new unit which is a
times smaller, then all numerical values x get multiplied by a: x 7→ a · x. For exam-
ple, if we replace meters by centimeters – a 100 times smaller unit – then, e.g., the
original height of 1.7 m becomes 1.7 · 100 = 170 cm. Similarly, if we replace the
original starting point with a new point which is b degrees smaller, then to all nu-
merical values we add this value b: x 7→ x+ b. Thus, in general, if we change both
the measuring unit and the starting point, we get a linear transformation x 7→ a ·x+b.

Nonlinear rescalings. In many practical situations, we can also have nonlinear
rescalings. For example, instead of describing the electric properties of an object,
we can use resistance R or we can use conductivity 1/R. Which of such nonlinear
transformations are natural?

In general, linear transformations are natural. If we have a natural transformation
from scale A to scale B, then the inverse transformation – from scale B to scale A – is
also natural. If we have a natural transformation from scale A to scale B and another
natural transformation from scale B to scale C, then their composition is a natural
transformation from scale A to scale C. Thus, the class of all natural transformations
is closed under composition and under taking an inverse, i.e., in mathematical terms,
this means that this class should be a transformation group.

At any given moment of time, we can store and process only finitely many values.
Thus, to effectively deal with different natural transformations, we should require
that a natural transformation should be uniquely determined by the values of finitely
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many parameters. In mathematical terms, this means that the class of all natural
transformations should be finite-dimensional.

It is known – see, e.g., [9] and references therein – that for transformations from
real numbers to real numbers, each finite-dimensional transformation group con-
taining all linear transformations contains only fractional linear transformations. In
other words, all natural transformations should be fractional linear, i.e., have the
form

x 7→ a · x+b
c · x+d

, (2)

for some constants a, b, c, and d.

Natural functions of two variables. For a function z = f (x,y) of two variables:

• if we fix x, then we get a transformation y 7→ f (x,y), and
• if we fix y, then we get a transformation x 7→ f (x,y).

It is reasonable to say that a function f (x,y) is natural if all these transformations
are natural – and thus, fractional linear. Let us characterize all such functions.

3 First Result: Characterizing All Natural Functions of Two
Variables

Reminder. Let us recall that a function f (x,y) is called bilinear if it has the form

f (x,y) = a0 +a1 · x+a2 · y+a12 · x1 · x2. (3)

In these terms, we have the following result.

Definition 1. We say that a function f (x,y) is natural if the following two conditions
are satisfied:

• for every x, the mapping y 7→ f (x,y) is fractional linear, and
• for every y, the mapping x 7→ f (x,y) is fractional linear.

Proposition 1. A function f (x,y) is natural if and only if it is a ratio of two bilinear
functions.

Proof. If we fix the value of one of the variables, then a bilinear function becomes
linear, and thus, the ratio of two bilinear functions becomes fractional linear. Thus,
a ratio of two bilinear functions is natural in the sense of Definition 1.

So, to prove the proposition, it is sufficient to prove that every natural transfor-
mation is a ration of two bilinear functions. Indeed, naturalness means, in particular,
that for every y, there exists values a(y), b(y), c(y), and d(y) for which

f (x,y) =
a(y) · x+b(y)
c(y) · x+d(y)

. (4)



4 F. Zapata, E. Smith, V. Kreinovich, and Nguyen Hoang Phuong

In the generic case, d(y) ̸= 0, so we can delete both numerator and denominator by
d(y) and get a simpler expression

f (x,y) =
A(y) · x+B(y)

C(y) · x+1
, (5)

where we denoted

A(y) def
=

a(y)
d(y)

, B(y) def
=

b(y)
d(y)

, and C(y) def
=

c(y)
d(y)

.

(The case when d(y)≡ 0 can be treated similarly.)
Since the function f (x,y) is natural, for each x, the expression (5) is a fractional

linear function of y. In particular, if we select three generic different values x1, x2,
and x3, we conclude that

fi(y) =
A(y) · xi +B(y)

C(y) · xi +1
, (6)

where fi(y)
def
= f (xi,y) is the corresponding fractional linear function. Multiplying

both sides of the formula (6) by the denominator, we conclude that

C(y) · xi · fi(x)+ fi(y) = A(y) · xi +B(y), (7)

i.e., equivalently, that

xi ·A(y)+B(y)− fi(y) · xi ·C(y) =− fi(y). (8)

So, for each y, we have the system of three linear equations to determine the three
unknowns A(y), B(y), and C(y). According to Cramer’s rule, the solution to a sys-
tem of linear equations is a ratio of two determinants – which are polynomials in
terms of the coefficients. In mathematics, ratios of polynomials are called rational
functions. So, the solution to a system of linear equations is a rational function of
all the coefficients. In our case, xi, 1, and −1 are constants, and fi(y) ·xi is a rational
function. So, each of the coefficients A(y), B(y), and C(y) is a rational function of a
rational function – and thus, a rational function itself. In other words:

A(y) =
PA(y)
QA(y)

, B(y) =
PB(y)
QB(y)

, C(y) =
PC(y)
QC(y)

(9)

for some polynomials PA(y), QA(y), PB(y), QB(y), PC(y), and QC(y). Substituting
the expressions (9) into the formula (5), we conclude that

f (x,y) =

PA(y)
QA(y)

· x+ PB(y)
QB(y)

PC(y)
QC(y)

· x+1
. (10)
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By using the usual formulas for addition and division of fractions, we conclude that

f (x,y) =

Pa(y) ·QB(y)+ x ·PB(y) ·QA(y)
QA(y) ·QB(y)

x ·PC(y)+QC(y)
QC(y)

=

PA(y) ·QB(y) ·QC(y)+ x ·PB(y) ·QA(y) ·QC(y)
x ·QA(y) ·QB(y) ·PC(y)+QA(y) ·QB(y) ·QC(y)

. (11)

In other words, the function f (x,y) is a ratio of two polynomials which are linear in
x. These two polynomials may have a non-constant common divisor, which is either
linear in x or does not depend on x at all. Dividing both numerator and denominator
by the greatest common divisor of these two polynomials, we conclude that

f (x,y) =
a0(y)+ x ·b0(y)
x · c0(y)+d0(y)

(12)

for some polynomials a0(y), b0(y), c0(y), and d0(y).
Similarly, from the fact that for each y, the mapping x 7→ f (x,y) is fractional

linear, we conclude that

f (x,y) =
A0(x)+ y ·B0(x)
y ·C0(x)+D0(y)

(13)

for some polynomials A0(x), B0(x), C0(y), and D0(x). Equating the right-hand sides
of the formulas (12) and (13), we conclude that

a0(y)+ x ·b0(y)
x · c0(y)+d0(y)

=
A0(x)+ y ·B0(x)
y ·C0(x)+D0(x)

. (14)

Multiplying both sides of this equality by both denominator, we conclude that

(a0(y)+x ·b0(y)) ·(y ·C0(x)+D0(x))= (x ·c0(y)+d0(y)) ·(A0(x)+y ·B0(x)). (15)

The left-hand side of this equality is divisible by a0(y)+x ·b0(y), which means that
the right-hand side must be divisible by the same expression. By our construction
of the expression (12), this sum has no common factors with

x · c0(y)+d0(y).

Thus, it must divide A0(x)+ y ·B0(x).
Similarly, the right-hand side of the equality (15) is divisible by

A0(x)+ y ·B0(x).

Since by our construction of the expression (13), this sum has no common factors
with y ·C0(x)+D0(x). Thus, it must divide a0(y)+ x ·b0(y).
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So, the polynomials a0(y)+x ·b0(y) and A0(x)+y ·B0(x) must divide each other
and thus, they should differ only by a multiplicative constant c:

a0(y)+ x ·b0(y) = c ·A0(x)+ y · c ·B0(x) (16)

for all x and y. In particular, for two different values x1 and x2, we conclude that

a0(y)+ xi ·b0(y) = c ·A0(xi)+ y · c ·B0(xi). (17)

So, we have two linear equations with constant coefficients for determining two un-
knowns a0(y) and b0(y). Thus, the solution is a linear combination of the right-hand
sides. Right-hand sides are linear functions of y, so both a0(y) and b0(y) are linear
functions of y: a0(y) = a00 + a01 · y and b0(y) = a10 + a11 · y, for some coefficients
ai j. Thus, the numerator of the expression (12) has the form

a0(y)+ x ·b0(y) = a00 +a10 · x+a01 · y+a11 · x · y. (18)

In other words, this numerator is a bilinear function.
Similarly, we can conclude that the denominator of the expression (12) is a bilin-

ear function:

x · c0(y)+d0(y) = c00 + c10 · x+ c01 · y+ c11 · x · y (19)

for some coefficients ci j. Thus, according to the formula (12), the function f (x,y) is
indeed equal to the ratio of two bilinear functions:

f (x,y) =
a00 +a10 · x+a01 · y+a11 · x · y
c00 + c10 · x+ c01 · y+ c11 · x · y

. (20)

The proposition is proven.

Comment. A similar result can be similarly proven for a function of several vari-
ables. Let us recall that a function f (x1, . . . ,xn) is called multi-linear if it has the
form

f (x1, . . . ,xn) = ∑
S⊆{1,...,n}

aS ·∏
i∈S

xi. (21)

In these terms, we have the following result.

Definition 2. We say that a function f (x1, . . . ,xn) is natural if for all i and for all
possible values x1, . . . ,xi−1, . . . ,xi+1, . . . ,xn, the mapping

xi 7→ f (x1, . . . ,xi−1,xi,xi+1, . . . ,xn)

is fractional linear.

Proposition 2. A function f (x1, . . . ,xn) is natural if and only if it is a ratio of two
multi-linear functions.
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4 Scale Invariance

Requirement. The values Red and NDVI depend on the solar angle. For a different
angle, the same situation leads to the values Red and NDVI both multiplied by the
same constant. Thus, to make a characteristic that does not depend on the solar
angle, we want to select a characteristic f (NIR,Red) that should not change if we
simply change the angle, i.e., for which

f (c · x,c · y) = f (x,y)

for all possible values of c, x, and y. Such functions are known as scale-invariant.
The following result characterizes all scale-invariant natural functions.

Proposition 3. A natural function f (x,y) which is not identically constant is scale-
invariant if and only if it has the form

f (x,y) =
a10 · x+a01 · y
c10 · x+ c01 · y

. (22)

Proof. One can easily prove that each expression (22) is scale-invariant. Vice versa,
let us assume that a natural function is scale-invariant. We know, from Proposition
1, that all natural functions are described by expression (20). Thus, scale invariance
means that for all x and y, we have

f (x,y) =
a00 +a10 · x+a01 · y+a11 · x · y
c00 + c10 · x+ c01 · y+ c11 · x · y

=

a00 + c ·a10 · x+ c ·a01 · y+ c2 ·a11 · x · y
c00 + c · c10 · x+ c · c01 · y+ c2 · c11 · x · y

. (23)

To prove the proposition, we need to prove that a00 = c00 = 0 and that a11 = c11 = 0.
Let us prove that a00 = c00 = 0. Indeed, if at least of these two coefficients is

different from 0, then for c → 0, the right-hand side of the equality (23) becomes a
constant a00/c00, so we conclude that the function f (x,y) is constant.

Similarly, if at least one of the coefficients a11 and c11 is different from 0, then in
the limit c → ∞, the right-hand side of the equality (23) becomes a constant a00/c00,
so we conclude that the function f (x,y) is constant.

So, if the function f (x,y) is not constant, all these four coefficients should be
equal to 0. Thus, Proposition 3 is proven.

Discussion. We have almost got the desired expression (1). To get even closer to
the expression (1), let us take into account that the NDVI index changes from −1
to 1. If we require that the range of the function is exactly [−1,1], then we get the
following result.

Proposition 4. A natural scale-invariant function f (x,y) whose range of values for
x,y ≥ 0 is [−1,1] has the form
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f (x,y) =
x− c · y
x+ c · y

or f (x,y) =−x− c · x
x+ c · y

. (24)

Proof. If we divide both the numerator and the denominator of the expression (22)
by x, we get

f (x,y) = F(z) def
=

a10 +a01 · z
c10 + c11 · z

, where a =
y
x
. (25)

The fact that the range of this function is between −1 and 1 means that this function
is defined for all z. In this case, the fractional linear function (25) is monotonic, so
its range when z ∈ [0,∞] is simply an interval bounded by the values of this function
at the endpoints z = 0 and z = ∞. So, the fact that the range is equal to [−1,1] means
that one of the values F(0) and F(∞) should be equal to 1, and another value to −1.

If F(0) = −1, then for its opposite G(z) def
= −F(z) = − f (x,y), we have G(0) =

−F(0) = 1. So, without losing generality, we can consider the case when F(0) =
1. Substituting the value z = 0 into the right-hand side of the formula (25), we
conclude that a10/c10 = 1, i.e., that a10 = c10. Dividing both the numerator and the
denominator of the expression (25) by this common value a10 = c10, we conclude
that

F(z) =
1+a · z
1+ c · z

, where a =
a01

a10
and c =

c01

c10
. (26)

This ratio has to be defined for all z, so we must have c ≥ 0 – otherwise, if c < 0,
this expression would not be defined for z =−1/c.

For z = ∞, we have F(∞) = −1, so a/c = −1, thus a = −c. The proposition is
proven.

Conclusion. We (almost) explained why NDVI is a relevant characteristics.

Comment. Similar argument can – partly – explain the effectiveness of fractional-
linear similarity coefficients like Jaccard index

s(A,B) =
µ(A∩B)

µ(A)+µ(B)−µ(A∩B)
,

where µ(S) denotes the measure of the set S; see, e.g., [15].
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