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Abstract—In general, many general mathematical formulations
of uncertainty quantification problems are NP-hard, meaning
that (unless it turned out that P = NP) no feasible algorithm is
possible that would always solve these problems. In this paper, we
argue that if we restrict ourselves to practical problems, then the
correspondingly restricted problems become feasible – namely,
they can be solved by using linear programming techniques.

Index Terms—uncertainty quantification, p-box, NP-hard, de-
cision making, linear programming

I. FORMULATION OF THE PROBLEM

A. Uncertainty Quantification (UQ) is important

Most of our knowledge about the world comes ultimately
from measurements. We also use theoretical models, but these
models – even those that are not directly inspired by measure-
ments results – have to be confirmed by measurements, and
are only as reliable as the measurements that confirm them.

No matter how accurate are the measurements, they are
never absolutely accurate. In general, the result x̃ of measuring
a quantity x is different from the actual (unknown) value x of
this quantity. In other words, we have a non-zero measurement
error ∆x

def
= x̃− x; see, e.g., [13].

Because of this uncertainty, the estimates that we make
based on these measurements are also uncertain. To make
proper decisions, we need to understand how accurate are
these estimates. For example, if we are prospecting for oil
in a certain area and the current estimate is that this area
contains 100 million tons of oil, then whether it is very good
news or just maybe good news depends on how accurate is
this estimate:
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• if it is 100± 20, then we should start exploiting this oil
field;

• however, if it is 100±200, then maybe there is no oil there
at all, so it is advisable to do some more measurements
before investing money into this area.

B. How uncertainty is usually described

Let us denote all the quantities that we measure by
x1, . . . , xm. In these terms, we want to know which tuples
X = (x1, . . . , xm) are possible – i.e., what is the set X
of possible tuples, and what are the probabilities of different
tuples X from this set.

Ideally, we should therefore find the probability distribution
on the set of all possible tuples. But where can we get the
corresponding probabilities? There is only one source of all
the information about the world – and, in particular, of the
information about the probabilities – measurements.

During any period of time, we can only perform finitely
many measurements. A general probability distribution re-
quires infinitely many parameters to describe – and, based on a
finite set of measurements, we cannot uniquely determine the
probability distribution. So, in practice, we never know the ex-
act probability distribution – we only have partial information
about the actual (unknown) probability distribution.

We may get different types of information about this distri-
bution:

• For example, we can have bounds on the distribution’s
moments.

• We can have bounds F i(vi) ≤ Fi(vi) ≤ F i(vi) on the
values of the cumulative distribution functions

Fi(vi)
def
= Prob(xi ≤ vi);

such bounds are known as probability boxes, or p-boxes,
for short.

• We may have many other different types of information
about uncertainty.



C. In general, UQ problems are NP-hard
In general, uncertainty quantification problems are NP-hard;

see, e.g., [1], [9], [12] and references therein. This means,
crudely speaking, that, unless P = NP (which most computer
scientists believe to be false), no feasible algorithm is possible
that would solve all possible UQ problems.

D. What we do in this paper
In this paper, we argue that if we go down to the level of the

original measurement results, then most (if not all) practical
UQ problems become feasible.

To make this argument, we need to formulate a general UQ
problem, namely, we need to specify:

• what information can we have – this we analyze in
Section 2, and

• what do we want to estimate – this we analyze in
Section 3.

Based on this general description, we need to explain how we
can feasibly estimate what we want based on the information
that we have – this we describe in Section 4.

II. WHAT INFORMATION CAN WE HAVE

A. The main claim of this section
The main claim of this section is that many types of partial

information about the probability distribution consist of linear
inequalities, i.e., inequalities of the type∫

a(X) · f(X) dX ≤ b (1)

for some function a(X), where f(X) is the actual (unknown)
probability density function.

To support this claim, we will first describe typical types of
partial information (many of them are mentioned in [3]), and
show that they indeed have this form (1) – or at least can be
equivalently reformulated in this form.

After that, we provide general arguments that any reason-
able partial information has this form.

B. Upper bounds vs. lower bounds
The formula (1) provides an upper bound b on the statistical

characteristic ∫
a(X) · f(X) dX.

In some practical situations, we have lower bounds:

b ≤
∫

a(X) · f(X) dX. (2)

From the physical viewpoint, lower bounds are different.
However, from the computational viewpoint, each lower bound
can be easily reformulated in terms of equivalent upper bound.
Namely, if we multiply both sides of the inequality (2) by −1,
we get the inequality∫

a′(X) · f(X) ≤ b′, (3)

where we denoted a′(X)
def
= −a(X) and b′

def
= −b.

Because of this possibility, in the following text, we will
mostly consider upper bounds.

C. What if we know the exact value

If we know the exact value b of the corresponding statistical
characteristics, i.e., if we know that∫

a(X) · f(X) dX = b,

then this knowledge can be described as two bounds:

b ≤
∫

a(X) · f(X) dX

and ∫
a(X) · f(X) dX ≤ b,

i.e., equivalently, as two upper bounds: (1) and∫
(−a(X)) · f(X) dX ≤ (−b).

D. Continuous vs. discrete

From the purely mathematical viewpoint, most physical
quantities x can take any real-number values – and there
are infinitely many possible real numbers. However, from
the practical viewpoint, we need to take into account that
values which are too close to each other are practically
indistinguishable.

For example, theoretically, we can determine a person’s
weight with microgram accuracy, but then the weight will
change when a person breathes in or breathes out, sweats,
or drinks a cup of water. Measuring this weight with accuracy
better than ±200 grams makes no practical sense. Similarly,
when we measure outside temperature, making too accurate
measurements makes no sense: the temperature at different
parts of the street may differ by half a degree or even more.
The same is true for all possible quantities.

Also, for each measuring instrument, there are natural
bounds within which it can provide meaningful measurements.
For example:

• a ruler cannot be used to measure distances larger than a
certain amount,

• all scales have their limitations after which the scale will
be simply crushed by the weight,

• thermometers melt if the temperature is too high and
freeze when it is too low, etc.

Because of this, in reality, each quantity xi has only finitely
many practically distinguishable values:

• the smallest detectable value xi,0,
• the next value xi,1 = xi,0 + h, where hi is the smallest

difference that makes practical sense,
• the value xi,2 = xi,0 + 2hi, etc., all the way to
• the largest possible value xi,ni

= xi,0 + Ni · hi for an
appropriate Ni.

As a result, there are finitely many possible values of the
tuple X = (x1, . . . , xm): namely, only the tuples

Xn1,...,nm

def
= (x1,n1

, . . . , xm,nm
).



In these terms, to describe the probability distribution, it is
sufficient to describe the probability

pn1,...,nm

def
= Prob(X = Xn1,...,nm

)

of each possible tuple. In terms of these probabilities, the
inequality (1) takes the form∑

n1,...,nm

a(Xn1,...,nm) · pn1,...,nm ≤ b. (4)

The left-hand side of the formula (4) is nothing else but an
integral sum of the integral from the formula (1). When h is
small – and usually, it is small – the integral sum is very close
to the actual integral: it is sufficient to recall that the usual
way of estimating an integral is to compute the corresponding
integral sum.

Thus, from the practical viewpoint, we will consider formu-
las (1) and (4) as interchangeable, and use both.

E. Moments and bounds on moments

Let us start providing examples of partial information about
probabilities that can be described in the equivalent form (1)–
(4). Our first example is moments, i.e., expressions of the type

Mk1,...,km

def
=

∫
xk1
1 · . . . · xkm

m · f(x1, . . . , xm) dx1 . . . dxm,

or, in discrete form,

Mk1,...,km =

N1∑
n1=1

. . .

Nm∑
nm=1

xk1
1,n1

· . . . · xkm
m,nm

· pn1,...,nm .

Both expressions are clearly linear in terms of the correspond-
ing probabilities – i.e., in terms of f(X) or of the probabilities
pn1,.... Thus, any bound on the moments is a linear inequality
– i.e., has the desired form (1)–(4).

F. Cumulative distribution functions (cdf) and p-boxes

Another possible information is information about (i.e.,
bounds on) the cumulative distribution function F (v) of:

• either the quantities xi themselves,
• or, more generally, of a quantity

y = s(X) = s(x1, . . . , xn)

depending on these quantities.
The value F (v) = Prob(y ≤ v) can be described as

F (v) =

∫
X: s(X)≤v

f(X) dX,

i.e., equivalently, as

F (v) =

∫
X

a(X) · f(X) dX,

where:
• a(X) = 1 if s(X) ≤ v, and
• a(X) = 0 otherwise.

Similarly, in the discrete case, the value F (v) can be de-
scribed as ∑

Xn1,...,nm

a(Xn1,...,nm) · pn1,...,nm .

In both continuous and discrete cases, constraints

F (v) ≤ F (v) ≤ F (v)

become inequalities which are linear with respect to f(X) or
pn1,...,nm

.

G. Information about the probability density function

We can also have information about (i.e., bounds on)
the values f(X) (or, in the discrete case, pn1,...,nm

) of the
probability density function f(X) itself.

In this case, of course, the bounds f(X) ≤ b or pn1,...,nm ≤
b are already inequalities which are linear in terms of f(X)
or pn1,...,nm

.

H. Symmetry information

In addition to bounds on the values of different statis-
tical characteristics, we may also have information about
the invariance of these characteristics with respect to some
transformations.

For example, we may know that a 1-D distribution f(x1)
is symmetric with respect to the transformation x1 7→ −x1.
This invariance means that f(−x1) = f(x1), i.e., that
f(−x1)−f(x1) = 0. This is also a linear equality in terms of
the function f(X) – and can, thus, be described as two linear
inequalities.

I. What about the general case

In general, how do we estimate a general statistical char-
acteristic? Like every other knowledge about the words, we
estimates these characteristics based on the measurement re-
sults.

Specifically, we have several tuples X(1), . . . , X(K) corre-
sponding to different independent measurements, and we want
to estimate the desired characteristics based on this K-element
sample.

As we have mentioned, in practice, at any given moment of
time, we can have only finitely many measurement results.
Based on these measurement results, we can only deter-
mine the values of finitely many parameters describing the
corresponding probability distribution. Thus, no matter what
estimation method we use, we restrict ourselves – explicitly
or implicitly – to a finite-parametric family of distributions

f(X, c1, . . . , ct),

in which each distribution is obtained by specifying the values
of the parameters cj .

For example, in engineering applications, we often explicitly
restrict ourselves to Gaussian distributions, for which the
known formula describes the pdf in terms of means and
the covariance matrix. On the other hand, a widely used
way to determine a probability distribution based on partial



information is the Maximum Entropy approach (see, e.g., [7]),
in which, among all probability distributions f(X) which are
consistent with observations, we select the distribution for
which the entropy

−
∫

f(X) · ln(f(X)) dX

attains the largest possible value.
Similarly, if we use machine learning [2] – e.g., deep

learning [6] – to determine the desired distribution, we still
get a finite-parametric family of the distributions – but this
time, this family is implicitly described, there is no simple
analytical expression for distributions from this family.

In terms of the family f(X, c1, . . . , ct), identifying a distri-
bution means estimating the values of all the parameters cj .
How can we estimate these parameters based on the sample?
For each combination of values cj , the probability of observing
each tuple X(k) is equal to f

(
X(k), c1, . . . , ct

)
. Since these

measurements are independent, the probability that we have
observed all tuples is equal to the product of these probabili-
ties, i.e., to the value

f
(
X(1), c1, . . . , ct

)
· . . . · f

(
X(K), c1, . . . , ct

)
. (5)

This value represents, in effect, the probability that the values
cj are the good fit for the observed tuples. Since we need to
select a single combination of the parameters cj , a reasonable
idea is to select the most probable combination

c = (c1, . . . , ct),

i.e., the combination for which the product (5) attains the
largest possible value. This approach – known as the Maximum
Likelihood approach – is indeed one of the most widely used
techniques for estimating the values of different statistical
characteristics; see, e.g., [15].

How does this lead to linear inequalities? Maximizing the
product (5) is equivalent to maximizing its logarithm, i.e.,
the sum

K∑
k=1

ln
(
f
(
X(k), c1, . . . , ct

))
. (6)

According to calculus, the maximum of a function is attained
when all its partial derivatives are equal to 0, i.e., when for
each j = 1, . . . , t, we have

K∑
k=1

∂

∂cj

(
ln
(
f
(
X(k), c1, . . . , ct

)))
= 0. (7)

So, we have
K∑

k=1

aj

(
X(k)

)
= 0. (8)

where we denoted

aj(X)
def
=

∂

∂cj
(ln (f (X, c1, . . . , ct))) . (9)

For any function a(X), a natural estimate of its mean value∫
a(X) · f(X) dX based on sample is the sample average:

a
(
X(1)

)
+ . . .+ a

(
X(K)

)
K

.

The formula (8) implies that the sample average of the values
aj(X) is equal to 0:

aj
(
X(1)

)
+ . . .+ aj

(
X(K)

)
K

= 0. (10)

Thus, the corresponding mean value
∫
aj(X) · f(X) dX is

also close to 0 – with accuracy ε with which we can estimate
this mean by a sample mean. In other words, the estimates cj
are equivalent to the following linear inequalities

−ε ≤
∫

aj(X) · f(X) dX ≤ ε

for the functions aj(X) defined by the formula (9).
In other words, in the general case, we can also formulate

any partial knowledge about a probability distribution in terms
of linear inequalities.

III. WHAT DO WE WANT TO ESTIMATE

A. The main claim of this section

The main claim of this section is that the decisions of a
rational decision makers are equivalent to maximizing some
expression

c =

∫
c(X) · f(X) dX (11)

which is linear in terms of the probabilities f(X).
In the discrete case, this maximized expression takes the

form

c =

N1∑
n1=1

. . .

Nm∑
nm=1

cn1,...,nm
· pn1,...,nm

. (12)

To justify this claim, we will use general ideas of decision
theory; see, e.g., [5], [8], [10]–[12], [14].

B. How to describe preferences in numerical terms

Computers have been invented to deal with numbers. Num-
bers are still what computers process most efficiently. So, to
enable computers to help us make decisions – and making
decisions is one of the main objectives of science and engineer-
ing – it is desirable to describe all available information into
numbers. In particular, it is desirable to transform information
about our preferences into numbers.

To perform this transformation, we need to have a numerical
scale for preferences. This scale can be constructed as follows.
First, let us select two alternatives:

• an alternative A− which is worse than anything that we
can potentially encounter; we will call this alternative
very bad; and

• an alternative A+ which is better than anything that we
can potentially encounter; we will call this alternative
very good.



Then, for all numbers p from the interval [0, 1], we can form
a lottery in which:

• we get a very good alternative A+ with probability p,
and

• we get a very bad alternative A− with the remaining
probability 1− p.

We will denote this lottery by L(p).
Now, let us consider any of the actual alternatives A. Then:
• when p is close to 0, then the lottery L(p) is close to the

very bad alternative A− and is, thus, worse than A; we
will denote it by L(p) < A;

• on the other hand, when p is close to 1, then the lottery
L(p) is close to the very good alternative A+ and is, thus,
better than A: A < L(p).

As the probability p of getting the very good alternative
increases, the lottery L(p) becomes better and better. At some
point, we will switch from L(p) < A to A < L(p). This
threshold value u(A), for which:

• L(p) < A for p < u(A), and
• A < L(p) for p > u(A)

is called the utility of the alternative A.
By definition of the utility, for every ε > 0, we have

L(u(A)− ε) < A < L(u(A) + ε).

As we have mentioned earlier, when the value ε is sufficiently
small, there is no way to practically distinguish probabilities
u(A) and u(A) ± ε. Thus, from the practical viewpoint, the
alternative A is equivalent to the lottery L(u(A)); we will
denote this practical equivalence by A ≡ L(u(A)).

For lotteries L(p), the larger the probability, the better:

p < q ⇔ L(p) < L(q).

Thus, in general, A < B if and only u(A) < u(B). So, utilities
indeed provide a numerical representation of preferences.

C. How to describe preferences under uncertainty

In practice, we often cannot predict with 100% certainty
what will be the consequence of each action. Suppose that for
some action a, possible results are A1, . . . , Ar with probabil-
ities p1, . . . , pr. So, this action is equivalent to a lottery in
which we get each alternative Ai with probability pi.

Each alternative Ai, in its turn, is equivalent to a lottery
in which we get A+ with probability u(Ai) and A− with
the remaining probability 1 − u(Ai). Thus, the action a is
equivalent to a two-stage lottery, in which:

• first, we select one of the alternatives Ai with probability
pi, and

• then, depending on which alternative Ai we selected on
the first stage, we select A+ with probability u(Ai) or
A− with the remaining probability 1− u(Ai).

As a result of this two-stage lottery, we get either A+ or A−.
One can see that the probability of selecting A+ in this two-
stage lottery is equal to the sum

r∑
i=1

pi · u(Ai). (13)

By definition of utility, this means that the formula (13)
describes the utility of the action a. So, this formula describes
the quality of each action – as a linear combination of the
corresponding probabilities. Thus, to decide which action is
better, we need to estimate this expression (13) for different
actions.

In particular, in our case, when alternatives correspond to
different tuples Xn1,...,nm

with probabilities pn1,...,nm
, we get

the expression
N1∑

n1=1

. . .

Nm∑
nm=1

cn1,...,nm
· pn1,...,nm

, (14)

where
cn1,...,nm

def
= u(Xn1,...,nm

)

is the utility of the corresponding tuple.
In the integral form, this expression takes the form∫

c(X) · f(X) dX. (15)

Thus, to make decisions, we need to be able to estimate, based
on the available knowledge, the value of the expression (14)–
(15).

IV. HOW CAN WE FEASIBLY ESTIMATE THE DESIRED
QUANTITIES: GENERAL IDEA AND AN EXAMPLE

A. General case
According to the above analysis, our knowledge of the

actual (unknown) probabilities) pn1,...,nm
can be described in

terms of linear inequalities
N1∑

n1=1

. . .

Nm∑
nm=1

a(1)n1,...,nm
· pn1,...,nm

≤ b(1),

. . . (16)

N1∑
n1=1

. . .

Nm∑
nm=1

a(L)
n1,...,nm

· pn1,...,nm
≤ b(L).

Based on this information, we want to estimate the value of
the objective function

c =

N1∑
n1=1

. . .

Nm∑
nm=1

cn1,...,nm · pn1,...,nm . (17)

In general, due to uncertainty, the value of the objective
function is not uniquely determined by the available data, we
can have the whole range [c, c] of possible values. Here:

• The lower endpoint c of this range can be found if we
minimize the expression (17) under constraints (16).

• The upper endpoint c of this range can be found if we
maximize the expression (17) under constraints (16).

In both cases, we optimize a linear expression under linear
inequalities. Such optimization problems are known as linear
programming problems. Good news is that there exists feasible
algorithms for solving linear programming problems; see,
e.g., [16].

Thus, indeed, we can conclude that many practical uncer-
tainty optimization problems are feasible.



B. Example

Suppose that we know:
• the joint probability of x1 and x2, and
• the joint probability of x2 and x3.

What can we then conclude about the joint probability of x1

and x3?
In other words, for each n1, n2, and n3, we know the values

p(1,2)n1,n2
= Prob(x1 = x1,n1 &x2 = x2,n2)

and
p(2,3)n2,n3

= Prob(x2 = x1,n2 &x3 = x3,n3).

Based on this information, we need to estimate the values

p(1,3)n1,n3
= Prob(x1 = x1,n1 &x3 = x3,n3),

i.e., to find the ranges[
p(1,3)
n1,n3

, p(1,3)n1,n3

]
.

In terms of the unknowns pn1,n2,n3
, each desired value

p
(1,3)
n1,n3 has the form

N2∑
n2=1

pn1,n2,n3
, (18)

while the available information has the form
N3∑

n3=1

pn1,n2,n3
= p(1,2)n1,n2

(19)

and
N1∑

n1=1

pn1,n2,n3
= p(2,3)n2,n3

. (20)

Thus, to solve our problem, we must solve, for each n1 and
n3, the following two linear programming problems:

• to find the lower endpoint of the corresponding range, we
minimize the expression (18) under the conditions (19)
and (20); and

• to find the upper endpoint of the corresponding range, we
maximize the expression (18) under the conditions (19)
and (20).

C. Can we get non-trivial bounds this way?

Sometimes, we may get trivial bounds p(1,3)
n1,n3

= 0 and

p
(1,3)
n1,n3 = 1. However, there are cases when we get non-trivial

bounds.

For example, suppose that for all three variables, we have
the same sequence of values x1,i = x2,i = x3,i for all i, and
that p

(1,2)
i,j = 0 for i ̸= j and p

(2,3)
j,k = 0 when j ̸= k. This

means that:
• with probability 1, x1 = x2, and
• with probability 1, x2 = x3.

In this case, we conclude that x1 = x3, i.e., that p(1,3)i,k = 0
for all i ̸= k.

One can see that in this situation, the above linear program-
ming problems lead to p

(1,3)
i,k = p

(1,3)
i,k = 0 for all i ̸= k.

Comment. More realistic – and more complex – examples of
the corresponding problems can be found, e.g., in [3], [4].
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