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Predicting (Economic) Trends: Why
Signature Method in Machine Learning

Vladik Kreinovich and Chon Van Le

Abstract In many practical situations, we can predict the trend – i.e., how
the system will change – but we cannot predict the exact timing of this
change: this timing may depend on many unpredictable factors. For example,
we may be sure that the economy will recover, but how fast it will recover may
depend on the status of the pandemic, on the weather-affected agriculture
input, etc. In such trend predictions, one of the most efficient methods is
signature method, which is based on applying machine learning techniques
to several special characteristics of the corresponding time series. In this
paper, we provide an explanation for the empirical success of the signature
method.

1 What Is Signature Method

Predictions are important. Prediction is one of the main objective of sci-
ence, and economic predictions are one of the main objectives of econometrics.
We want to predict what will happen to economy if we do not interfere. If we
do not like this prediction, we need to decide what action to take to improve
the economy – and for that, we need to be able to predict what will happen
if we undertake different actions.

In some cases, we can predict the trend but not the timing. In some
cases, we are able to predict exactly what will happen at different future
moments of time – e.g., what will be the GDP next year. In other cases, there
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are too many factors affecting the situation: for example, in agriculture, a lot
depends on current weather patterns. In many such situations, it is possible
to predict the trend – but not the timing.

For example, we may predict that under an appropriate fiscal policy, the
economy will improve, that at some future moment of time, the GDP will
grow by 20% and the unemployment will decrease to half of the current value
– but we cannot predict whether this will happen in 3 years or in 6 years.
In such situations, what is important for prediction is also not when exactly
different events happen in the past – the exact timing is too much affected
by random events to be useful – but rather what was the state of economy
at different moments in the past. What is important, e.g., is that when the
crops decreased by 30%, the unemployment grew by 20% – this show how the
country’s economy depends on its agriculture sector – but it does not matter
whether this happened 3 or 4 years ago.

Let us describe this situation in precise terms. The state of the econ-
omy at each moment of time t can be characterized by the values of several
characteristics x = (x1, . . . , xn) at this moment of time. In these terms, what
we know is how, in the past, the state of the economy changed, i.e., what
were the values xi(t) of all these characteristics for all the moments of time t
starting from the moment T0 when we started recording these values to the
current moment T . Based on this information, we want to predict how the
state x(t) will change in the future, for moments t > T .

This prediction should not depend on the exact duration of each state,
only on the general trend. In other words, we should get the same prediction
based on the actual values x(t) and on the values X(t) = x(τ(t)) for any
increasing function τ(t).

� The processes may have been slower than they actually were – in this case,
we may have τ(t) = c · t for some c < 1.

� The processes may have been faster than they actually were – in this case,
we may have τ(t) = c · t for some c > 1.

� The processes may have been slower at some periods of time and faster
and other – in this case, the dependence τ(t) is nonlinear.

In all these cases, whether we use the original records x(t) or re-scaled records
X(t) = x(τ(t)), we should get the exact same predicted trend.

Additional requirement: predictions often depend only on changes,
not on the initial state. Another reasonable assumption is that the trend’s
predictions should depend only on the relative changes, not on the actual
initial state. For example, it is important to know that the GDP declined by
20% and the unemployment increased by 80%, but it does not matter that
much whether we talk about a big country with a large population and large
GDP or a smaller one with smaller population and a smaller GDP.

In precise terms, this means that what is important is not the actual values
xi(t), but rather the ratios xi(t)/xi(T0) describing how these values changed.
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In other words, the predictions should remain the same whether we use the
values xi(t) or the values ci · vi(t) for some constants ci. In many economic
situations, it is convenient to use logarithms vi(t) = ln(xi(t)) of the actual
values. The logarithm ln(ci ·xi(t)) of each re-scaled value is equal to the sum

ln(xi(t)) + ln(ci) = vi + Ci, where Ci
def
= ln(ci). In these terms, we should

predict the same trends whether we use the original dependence vi(t) or the
re-scaled dependence vi(t) + Ci.

Signature method: a brief description. In such situations, it turned out
to be very efficient to replace the original description vi(t) with the so-called
signature, i.e., with the sequence of the values

si1 =

∫
v̇i1(t1) dt1,

where, as usual, v̇i(t) indicates the derivative,

si1,i2 =

∫
T0≤t1≤t2≤T

v̇i1(t1) · v̇i2(t2) dt1 dt2,

. . .

si1,...,ik =

∫
T0≤t1≤...≤tk≤T

v̇i1(t1) · . . . · v̇ik(tk) dt1 . . . dtk, (1)

. . . ;

This idea especially useful when we use machine learning: trend predictions
based on the signature are much more accurate than if we apply deep learning
to the actual record vi(t); see, e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20].

Known fact: signature has the desired invariance properties. If we
add the same constant vector Ci to all the values vi(t), the derivatives will not
change, and thus, the signature values will not change. Hence, the signature
values remain the same whether we use the original dependence vi(t) or the
re-scaled dependence vi(t) + Ci.

Similarly, since v̇i(t)·dti = dvi(ti), each signature value can be represented
in the following equivalent form

si1,...,ik =

∫
T0≤t1≤...≤tk≤T

dvi1(t1) . . . dvik(tk). (2)

From this expression, it is clear that this value does not change if we re-scale
time, i.e., replace the original dependence vi(t) with the re-scaled dependence
vi(τ(t)).

But why signature? A natural question is: why signature and not other
characteristics? In this paper, we provide a possible explanation of why it
makes sense to use signature.
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2 Why Signature: An Explanation

What we want: reminder.We want to find characteristics depending on all
the values vi(t) for all i and t, characteristics that will be invariant under re-
scaling of time t 7→ τ(t) and under re-scaling of the values vi(t) 7→ vi(t)+Ci.

How to achieve independence with respect to re-scaling of values
vi(t). Independence on re-scaling of values can be achieved if we only consider
dependence on the derivatives v̇i(t).

Indeed, derivatives do not change under such re-scaling. Vice versa, once
we know the derivatives, we can reconstruct the differences

vi(t)− vi(T0) =

∫ t

T0

v̇i(s) ds

and thus, indeed reconstruct the value vi(t) modulo such re-scaling.

Resulting reformulation of the problem. So, to make sure that our
characteristics do not change under re-scaling of values vi(t), it makes sense
to consider characteristics depending on all the values v̇i(t) for all i and t,
characteristics that will be invariant under re-scaling of time t 7→ τ(t).

How can we describe general characteristics. Most dependencies are
smooth. There are seemingly non-smooth processes like phase transition, but
in reality, they are smooth too: just the time scale becomes different. Similarly
in economics, most characteristics smoothly change with time. Sometimes the
changes are fast and this seem abrupt and discontinuous, but in reality, they
are reasonably smooth.

In general, a sufficiently smooth function b = f(a1, . . . , an) of n inputs ai
can be described by its Taylor series:

b = b0 +

n∑
i1=1

bi1 · ai1 +
n∑

i1=1

n∑
i2=1

bi1,i2 · ai1 · ai2 + . . .+

n∑
i1=1

. . .

n∑
ik=1

bi1,...,ik · ai1 · . . . · aik + . . .

In our case, the unknowns ai are the values v̇i(t) corresponding to different
values of i and t. Theoretically, there are infinitely many moments of time t.
However, of course, in practice, we only have values vi(t) corresponding to
finitely many moments of time t1 < . . . < tm. In this case, as approximations
to derivatives, we have finite differences

v̇i(tℓ) ≈ δvi(tℓ)
def
=

vi(tℓ+1)− vi(tℓ)

∆tℓ
, (3)
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where we denoted
∆tℓ

def
= tℓ+1 − tℓ. (4)

By definition of the derivative, when ∆tℓ tends to 0, the finite difference
δvi(tℓ) tends to the derivative. Thus, when the differences ∆tℓ are sufficiently
small – i.e., when the moments tℓ are sufficiently close to each other – we
can safely assume, for all practical purposes, that the differences δvi(tℓ) are
equal to the corresponding derivatives.

In terms of these variables δvi(tℓ) corresponding to difference values of i
and ℓ, the general Taylor series expansion of a characteristic

s(δv1(t1), . . . , δv1(tm), δv2(t1), . . .)

takes the form

s = S0 +

n∑
i1=1

Si1 +

n∑
i1=1

n∑
i2=1

Si1,i2 + . . .+

n∑
i1=1

. . .

n∑
ik=1

Si1,...,ik + . . . , (5)

where we denoted

Si1,...,ik
def
=

m∑
ℓ1=1

. . .

m∑
ℓk=1

bi1,...,ik,ℓ1,...,ℓk · δvi1(tℓ1) · . . . · δvik(tℓk). (6)

Dividing and multiplying each terms in the sum by the product∆tℓ1 ·. . .·∆tℓk ,
we conclude that

Si1,...,ik =

m∑
ℓ1=1

. . .

m∑
ℓk=1

Bi1,...,ik(tℓ1 , . . . , tℓk) · δvi1(tℓ1) · . . . δvik(tℓk) ·∆tℓ1 · . . . ·∆tℓk , (7)

where we denoted

Bi1,...,ik(tℓ1 , . . . , tℓk)
def
=

bi1,...,ik,ℓ1,...,ℓk
∆tℓ1 · . . . ·∆tℓk

. (8)

Taking into account that, for the practical purposes, the differences δvik(tℓk)
are equal to the corresponding derivatives v̇i(tℓ), we conclude that

Si1,...,ik =

m∑
ℓ1=1

. . .

m∑
ℓk=1

Bi1,...,ik(tℓ1 , . . . , tℓk) · v̇i1(tℓ1) · . . . v̇ik(tℓk) ·∆tℓ1 · . . . ·∆tℓk . (9)

The expression (9) is nothing else but the integral sum for the integral

Ii1,...,ik =
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t1=T0

. . .

∫ T

tk=T0

Bi1,...,ik(t1, . . . , tk) · v̇i1(t1) · . . . v̇ik(tk) dt1 . . . dtk. (10)

When the differences ∆tℓ are small, for practical purposes, the integral sum
Si1,...,ik is equal to the integral Ii1,...,ik .

So, we conclude that a generic representation of a characteristic s has the
form

s = S0 +

n∑
i1=1

Ii1 +

n∑
i1=1

n∑
i2=1

Ii1,i2 + . . .+

n∑
i1=1

. . .

n∑
ik=1

Ii1,...,ik + . . . , (11)

where the integrals Ii1,...,ik are determined by the formula (10).

When is the general expression (11) invariant under re-scaling of
time? To come up with a description of all possible invariant characteristics,
we need to find out which expressions (11) are invariant under re-scaling of
time t 7→ τ(t).

To find out which expressions (11) are thus invariant, let us first take into
account – as we did in the previous section – that v̇i(t) · dti = dvi(t). Then,
the expression (10) takes the equivalent form

Ii1,...,ik =

∫ T

t1=T0

. . .

∫ T

tk=T0

Bi1,...,ik(t1, . . . , tk) dvi1(t1) . . . dvik(tk). (12)

If we re-scale time, we get an expression

Iτi1,...,ik =

∫ T

t1=T0

. . .

∫ T

tk=T0

Bi1,...,ik(τ(t1), . . . , τ(tk)) dvi1(t1) . . . dvik(tk).

(13)
Invariance means that we should have Ii1,...,ik = Iτi1,...,ik for all possible func-
tions v̇i(t). This means that the coefficients Bi1,...,ik should be the same in
both cases, i.e., that we should have

Bi1,...,ik(t1, . . . , tk) = Bi1,...,ik(τ(t1), . . . , τ(tk)) (14)

for all possible increasing functions τ(t).
One can easily check that every two tuples t1 < . . . < tk and t′1 < . . . < t′k

can be obtained from each other by some increasing function. Thus, for all
such tuples, the value Bi1,...,ik(t1, . . . , tk) is the same; we will denote it by
Bi1,...,ik .

Similarly, for any other ordering of the moments tπ(1) < . . . < tπ(k)
corresponding for any permutation π : {1, . . . , k} 7→ {1, . . . , k}, the value
Bi1,...,ik(t1, . . . , tk) depends only on this permutation and is the same for all
tuples (t1, . . . , tk) for which this ordering is true. We will denote this common
value by Biπ(1),...,iπ(k)

.
The whole domain of all possible tuples (t1, . . . , tk) – over which the in-

tegral (10) is computed – can be divided into sub-domains corresponding to
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different orders between ti. For example, for k = 2, we divide the domain of
all the pairs (t1, t2) into two sub-domains:

� the set of all the pairs for which t1 < t2 that corresponds to the identity
permutation π(i) = i, and

� the set of all the pairs for which t2 < t1 that corresponds to swap π(1) = 2
and π(2) = 1.

On the sub-domain Dk,π corresponding to the identity permutation π, the
value Bi1,...,ik(t1, . . . , tk) is a constant Bi1,...,ik , so the integral over this sub-
domain has the form∫

Dk,π

Bi1,...,ik(t1, . . . , tk) · v̇i1(t1) · . . . v̇ik(tk) dt1 . . . dtk =

Bi1,...,ik ·
∫
T0<t1<...<tk<T

dv1(t1) . . . dvik(tk). (14)

As usual, in the integration, the integral over measure-0 parts corresponding
to possible equalities such as t1 = T0, t1 = t2, etc. is 0, so we can say that∫

Dk,π

Bi1,...,ik(t1, . . . , tk) · v̇i1(t1) · . . . v̇ik(tk) dt1 . . . dtk =

Bi1,...,ik ·
∫
T0≤t1≤...≤tk≤T

dv1(t1) . . . dvik(tk). (15)

The integral in the right-hand side is exactly one of the signature values
si1,...,ik , so we get∫

Dk,π

Bi1,...,ik(t1, . . . , tk) · v̇i1(t1) · . . . v̇ik(tk) dt1 . . . dtk =

Bi1,...,ik · si1,...,ik . (16)

The integral Ii1,...,ik over the whole set of tuples (t1, . . . , tk) is equal to the
sum of the integrals over all sub-domains corresponding to different permu-
tations, so we get

Ii1,...,ik =
∑
π

Biπ(1),...,iπ(k)
· siπ(1),...,iπ(k)

. (17)

So, in the invariant case, the general expression (11) for a characteristic takes
the form

s = S0 +

n∑
i1=1

Bi1 · si1 +
n∑

i1=1

n∑
i2=1

Bi1,i2 · si1,s2 + . . .+
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n∑
i1=1

. . .

n∑
ik=1

Bi1,...,ik · si1,...,ik + . . . , (18)

i.e., it is a linear combination of the signature values.

Conclusion. It was known that signature values are invariant. What we have
shown is that any other invariant characteristic is nothing else but a linear
combination of signature values. In this sense, signature values is all that we
can extract from the data, they provide full information about the inputs.

This explains why signature values are so successful – since they provide
full information about the input.
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