University of Texas at El Paso

ScholarWorks@UTEP

Departmental Technical Reports (CS) Computer Science

7-1-2021

What Fuzzy and Quantum Computing Can Learn from the
Success of Deep Learning

Shahnaz Shahbazova
Azerbaijan Technical University, shahbazova@gmail.com

Vladik Kreinovich
The University of Texas at El Paso, vladik@utep.edu

Follow this and additional works at: https://scholarworks.utep.edu/cs_techrep

6‘ Part of the Computer Sciences Commons, and the Mathematics Commons
Comments:
Technical Report: UTEP-CS-21-66

Recommended Citation

Shahbazova, Shahnaz and Kreinovich, Vladik, "What Fuzzy and Quantum Computing Can Learn from the
Success of Deep Learning" (2021). Departmental Technical Reports (CS). 1599.
https://scholarworks.utep.edu/cs_techrep/1599

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UTEP. It has
been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of
ScholarWorks@UTEP. For more information, please contact Iweber@utep.edu.


https://scholarworks.utep.edu/
https://scholarworks.utep.edu/cs_techrep
https://scholarworks.utep.edu/computer
https://scholarworks.utep.edu/cs_techrep?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1599&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1599&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1599&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/cs_techrep/1599?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1599&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

What Fuzzy and Quantum Computing Can
Learn from the Success of Deep Learning

Shahnaz Shahbazova! and Vladik Kreinovich?
! Azerbaijan Technical University
Baku, Azerbaijan
shahbazova@gmail.com
2Department of Computer Science
University of Texas at El Paso
500 W. University
El Paso, TX 79968, USA
vladik@Qutep.edu

Abstract

How can we apply the ideas that made deep neural networks successful
to other aspects of computing? For this purpose, we reformulate these
ideas in a more general form — and we show that this generalization also
covers fuzzy and quantum computing. This enables us to suggest that
similar ideas can be helpful for fuzzy and quantum computing as well. In
this suggestion, we are encouraged by the fact that as we show, to some
extent, these ideas are already helpful.

1 Formulation of the Problem

A natural idea is to learn from successes. We all, scientists and practition-
ers, try our best to solve our problems better — more effectively, more efficiently,
etc. We want to better (and faster) predict all aspects of the future state of
the world, we want to compute designs and controls that will make the world’s
future state even better.

From this viewpoint, every time an approach leads to a success, a natural
idea is: how can we use the corresponding successful idea(s) to make improve-
ments in other areas as well?

From this viewpoint, what can we learn from the successes of deep
learning. At present, in AI — and, arguably, in computer science in general —
one of the most successful directions is deep learning; see, e.g., [4]. It is therefore
reasonable to ask: how can we use the main ideas behind this success to make
improvements in other directions of computing as well?

This is the problem that we concentrate on in this paper.



Comment. Of course, some researchers may say (and have said): just aban-
don your less-successful ideas and jump on deep learning bandwagon — but, in
contrast to these researchers, we believe that all approaches have potential and
can benefit each other. And we will provide examples showing that our belief
is justified.

Why quantum and fuzzy computing? In other to analyze how we can
generalize the success of neural networks — in their deep learning form, a natural
idea is to reformulate the main ideas behind neural networks and deep learning
ideas in a more general form. This is what we will do, and we will show that
this generalization naturally leads to fuzzy and quantum computing.

2 Let Us Reformulate the Main Ideas Behind
Neural Networks and Deep Learning in a More
General Form

What is the main challenge of computing? In order to come up with the
desired generalization, let us recall what is the main problem of computing now.

For many practical problems, we have, at least on the theoretical level,
algorithms for the desired prediction and/or for the desired control. For many
problems, these algorithms are practically useful. For example, the existing
algorithms can predict tomorrow’s weather reasonably well — not perfectly well,
but definitely much better than it was possible even a few years ago. Many
of these algorithms are so good that, e.g., modern airplanes are designed and
tested on computer simulations — and the following flight tests only confirm the
simulation results. Self-driving cars, while they still have accidents, are already,
on average, much safer than human drivers.

However, in some problems, we have algorithms, but these algorithms require
so much computation time that they become practically useless. For example,
it is possible to predict in which direction a potentially deadly tornado will
turn in the next 15 minutes — this can be done by using algorithms similar
to weather prediction — but this prediction is practically useless since it takes
several hours on a high-performance computer. By the time we have computed
this prediction, the tornado has already moved.

Such examples are plentiful. The need to make computations faster is one
of the main challenges of computing.

This challenge is objective. In some cases, it is possible to come up with
faster algorithms for solving the same problem. However, in general, there is a
limit to how much we can gain this way. Many practical problems are known to
be NP-hard. This means that unless P = NP (which most computer scientists
believe to be impossible), no feasible algorithm can solve all the instances of
this general problem; see, e.g., [6, 11]. In other words, no matter how clever our
algorithms, there will always be instances on which these algorithms will take
too long to be practically useful.



Since there is a limit to how much we can speed up computations by com-
ing up with better algorithms, it is crucially important to make sure that the
implementation of current algorithms is as fast as possible.

How to make the algorithm implementation faster? An algorithm, by
definition, consists of elementary computational steps. What are these elemen-
tary steps — i.e., hardware supported elementary operations — depends on the
computational device. So, to speed up computations, we need:

e to select elementary computational steps that can be computed in the
fastest possible way, and

e to actually implement these elementary steps in the fastest possible man-
ner.

Let us analyze these two aspects one by one.

Which elementary steps are the fastest? In sensors and in computers,
information is transferred by electric signals.

Some signals are analog. In these signals, the information is conveyed by
different values of current and/or voltage. This is how most sensors operate:
e.g., a photosensor transforms the intensity of light into the intensity of the
corresponding current.

For electric signals, all basic transformations are linear: Ohm’s law — ac-
cording to which voltage V linearly depends on current I, as V =1 - R —is
clearly linear, more general Kirkhoff’s laws are also linear. For analog signals,
any linear function is easy to implement:

e multiplication by a constant corresponds to using different resistances R,
and

e if we bring two currents I; and I5 together, the resulting current I will be
equal to their sum I = I + I.

In principle, we can have non-linear electric devices, but the fastest are linear
transformations.

In most modern computational devices, signals are digital, they are repre-
sented as a sequence of bits. For numbers represented in binary form, addition
or multiplication by a number are still reasonably fast, but they are no longer
the fastest possible operations: just like when we add multi-digit numbers, we
perform several digit operations, so does the computer. For digital signals, the
fewer bits we have to compute, the faster the computations. From this view-
point, the fastest are operations in which we compute only one bit — i.e., for
which, in effect, we decide whether some property is true ot false. For numbers,
the only such properties are equality and inequality, so the fastest operations
are min and max. Indeed, in each of these operations:

e first, we decide — via computations — which number is smaller (or larger),
and



e then return this smaller (or larger) number — without performing any
additional computations.

How to actually implement these elementary operations in the fastest
possible way? One of the main factors that limits computer speed is the speed
of limit — since, according to modern physics, no communication can be faster
than the speed of light; see, e.g., [3, 12].

This may sound like a remote restriction, not something to worry about —
but we are already close to this limit. For a typical computer which is about 30
cm across, it takes 30 cm / 300 000 km/sec = 1 nanosecond to go across. During
this time, the standard 4 Gigahertz computer already performs 4 operations!
So, the only way to make computers much faster is to make them much smaller
— and this means making all their components much smaller.

Already each memory cell is of the size of thousands or even hundreds of
molecules. If we make this cell smaller, its size will approach the size of a single
molecule. For such small objects, we can no longer use the laws of Newtonian
mechanics, we need to use special physics of microworld knows as quantum
physics.

Computing that takes quantum effects into account is known as quantum
computing; see, e.g., [9]. Interestingly, one of the main features of quantum
physics is that most its processes are linear, so we again go to the need to use
linear transformations [3, 9, 12].

So which elementary operations are the fastest? Our analysis shows that
the fastest possible elementary operations are:

e linear transformations, that transform inputs z1,...,x, into their linear
combination wg + w1 - T1 + ...+ W, - T, and

e min- and max-transformations that transform inputs x4, ..., x, into either
min(xy,...,%,) or max(xi,...,Ty).

Unfortunately, fastest transformations are not sufficient. It would be
great if we could only use these fastest elementary operations, but, unfortu-
nately, they are no sufficient:

e if we only use linear transformations, then we can only compute linear
functions — and many real-life processes are non-linear;

e if we only use min and max — both of which select one of the input values
as the output — we will always return one of the inputs, and we will never
be able to compute anything else.

So, in addition to the fastest elementary operations, we need something else:

e in addition to linear transformations, we need to use some non-linear trans-
formations, and



e in addition to min and max, we need to use some operations that return
the value which is different from one of the inputs.

This is exactly what leads us to neural, fuzzy, and quantum comput-
ing. Let us first consider the case when we add some non-linear transformation
to linear operations. In this cases, computations means that we interchangingly
apply linear transformations and some non-linear operations y = f(x). This is
exactly what neural networks do. On each layer, each processing unit — called a
neuron — first computes a linear combination of inputs (or, for next layers, out-
puts from the previous layer), and then applies some non-linear transformation
to the result. For neural networks, the corresponding transformation is known
as an activation function; see, e.g., [2].

For artificially set up neural networks, we can select any activation function
we want. For quantum computing, we have to rely on nature’s non-linear pro-
cess. Such a process is known as measurement. If we have a quantum state s
which is a linear combination s = ¢1-81+...4c¢y, - Sy, of the basic states sq, ..., sy,
then measurement transforms this state into one of the states s; with probability
ci|?; see, e.g., [3, 9, ?].

The operations min and max correspond to the most widely used operations
of fuzzy logic, corresponding to “and” and “or”. In this case, the corresponding
additional operation is known as defuzzification; see, e.g., [1, 5, 7, 8, 10, 13].

Thus, our general approach to computations indeed leads to neural, fuzzy,
and quantum computing.

3 From This General Viewpoint, What Can We
Learn from Deep Learning?

A seemingly reasonable idea. At first glance, the situation is straightfor-
ward:

e in addition to the fastest elementary computational steps, we need at least
one not-so-fast more complex one;

e overall, we want to speed up computations;

e thus, we need to limit the number of not-so-fast computational steps to a
minimum — if possible, to just one such step.

As a result, it is reasonable to use exactly one not-so-fast computational step.

This is exactly how traditional neural networks worked. This is exactly
how traditional neural networks worked (see, e.g., [2]):

e first, each neuron k transformed the inputs xq,...,z, into their linear
combination yr = wrg + Wk1 + T1 + - - . + Wiy - Ty

e then, we apply an appropriate nonlinear transformation z = f(0 to each
of these results, getting 2z, = f(yx) for each k, and



e finally, we apply a linear transformation to the values zj, resulting in
y=Wo+Wi-21+Wa- 2o+ ...

This is exactly how fuzzy and quantum computing work now. How
does a usual fuzzy control works?

e we apply min and max operations to the original values of the measure-
ment functions, and then

e we apply an appropriate defuzzification procedure to the result, generating
the recommended control value.

This is also how usual quantum computing algorithms work:
e we perform some linear quantum operations, and then

e we perform a measurement to get the result.

The above seemingly natural idea is only a first approximation. The
above idea would work perfectly if computing fastest elementary operation
would require no time at all, and the only computing time would be spent
of computing other not-so-fast operations. In reality, computing fastest elemen-
tary operations also spends time, and these times accumulate. Sometimes, it
may be more efficient to perform more not-so-fast operations.

A simply analogy can explain this. Suppose that you own a car. For a car,
repairs are usually cheaper than buying a new car. So, by the same logic as we
described above, to save money, we should postpone buying a new car until it
is absolutely necessary: e.g., when our previous car stops working. This advice
is reasonable at the beginning, when the car is not very old, but with time, it
becomes more expensive to continuously spend more and more money on more
and more frequent repairs than simply to buy a newer car.

Similarly here, while in general, the above logic sounds reasonable in the
first approximation, in reality, it may be faster to have two or more not-so-fast
elementary operations than to limit ourselves to only one such operation.

When does it make sense to use several not-so-fast operations. When
we have a small number of inputs and simple computations, probably the above
argument works: not-so-fast elementary operations are still much slower than all
corresponding faster elementary operations taken together. In this case, limiting
ourselves to only one not-so-fast operation makes perfect sense.

However, as the number of inputs grows and the computations become more
complex, the overall time needed for all elementary operations become compa-
rable with — and even larger — than the time needed for a single not-so-fast
operation. In this case, using more than one not-so-fast operation may be ben-
eficial.

What deep learning showed. This is exactly what happened in neural net-
works: it turned out that in many complex applications, it is more beneficial



to use several nonlinear layers. This is what is called deep learning — when we
have several nonlinear layers.

So what can fuzzy and quantum computing learn from this success.
In view of the above analysis, a natural idea is to allow several not-so-fast layers.

In fuzzy control, it means that instead of a single one-stage fuzzy controller,
we should use multi-stage (e.g., hierarchical) fuzzy controllers, where results of
some stages are used as input to other controllers. This indeed works — hierar-
chical fuzzy controllers have been shown to be efficient in controlling complex
systems.

In quantum computing, it means that instead of trying to fit everything into
a single quantum algorithm, it may be better to have a multi-stage algorithms,
in which we first perform measurements, and then do something with this mea-
surement results. This also works — e.g., this is how quantum cryptography
works: we first perform measurements, and then process the results of these
measurements; see, e.g., [9].

Our examples show that this idea is not as new and as revolutionary as it
may seem at first glance. Our point is that at present, this idea is not the
mainstream neither in fuzzy nor in quantum computing. Our argument is that,
as we handle more and more complex problems, with more and more inputs,
this idea should become mainstream.

Acknowledgments

This work was supported in part by the National Science Foundation grants
1623190 (A Model of Change for Preparing a New Generation for Professional
Practice in Computer Science), and HRD-1834620 and HRD-2034030 (CAHSI
Includes), and by the AT&T Fellowship in Information Technology.

It was also supported by the program of the development of the Scientific-
Educational Mathematical Center of Volga Federal District No. 075-02-2020-
1478.

References

[1] R. Belohlavek, J. W. Dauben, and G. J. Klir, Fuzzy Logic and Mathematics:
A Historical Perspective, Oxford University Press, New York, 2017.

[2] C. M. Bishop, Pattern Recognition and Machine Learning, Springer, New
York, 2006.

[3] R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on
Physics, Addison Wesley, Boston, Massachusetts, 2005.

[4] 1. Goodfellow, Y. Bengio, and A. Courville, Deep Leaning, MIT Press,
Cambridge, Massachusetts, 2016.



[5]

[6]

[13]

G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall, Upper
Saddle River, New Jersey, 1995.

V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational Complex-
ity and Feasibility of Data Processing and Interval Computations, Kluwer,
Dordrecht, 1998.

J. M. Mendel, Uncertain Rule-Based Fuzzy Systems: Introduction and New
Directions, Springer, Cham, Switzerland, 2017.

H. T. Nguyen, C. L. Walker, and E. A. Walker, A First Course in Fuzzy
Logic, Chapman and Hall/CRC, Boca Raton, Florida, 2019.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information, Cambridge University Press: Cambridge, U.K., 2000.

V. Novék, I. Perfilieva, and J. Mockor, Mathematical Principles of Fuzzy
Logic, Kluwer, Boston, Dordrecht, 1999.

C. H. Papadimitriou, Computational Complezity, Addison Wesley, San
Diego, CA, 1994.

K. S. Thorne and R. D. Blandford, Modern Classical Physics: Optics, Flu-
ids, Plasmas, Elasticity, Relativity, and Statistical Physics, Princeton Uni-
versity Press, Princeton, New Jersey, 2017.

L. A. Zadeh, “Fuzzy sets”, Information and Control, 1965, Vol. 8, pp. 338—
353.



	What Fuzzy and Quantum Computing Can Learn from the Success of Deep Learning
	Recommended Citation

	tmp.1638981560.pdf.Y22wf

