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Abstract. In many applications, including analysis of seismic signals, Daubechies wavelets perform much better than other
families of wavelets. In this paper, we provide a possible theoretical explanation for the empirical success of Daubechies wavelets.
Specifically, we show that these wavelets are optimal with respect to any optimality criterion that satisfies the natural properties
of scale- and shift-invariance.
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1. Formulation of the problem

Need for 1-D wavelets. The values of most physi-
cal quantities q change with time t: q = q(t). In
some cases, e.g., in celestial mechanics, we know the
general shape of this dependence, i.e., we know that
the function f(t, c1, . . . , cn) such that the actual dy-
namics q(t) is determined by this expression q(t) =
f(t, c1, . . . , cn) for some values of the parameters
c1, . . . , cn. In such cases:

– first, we use the values q(t1), . . . , q(tk) observed
during some observation period to determine the
values of these parameters, i.e., to solve the sys-
tem of equations

q(ti) = f(ti, c1, . . . , cn), i = 1, . . . , k, (1)

with the unknowns ci;
– then, we use the resulting values ci to predict the

to predict the future values q(t) of the quantity q
as q(t) = f(t, c1, . . . , cn).

Sometimes, the dependence on the parameters ci is
non-linear – so this system of equations is not easy to

*Corresponding author. Email: vladik@utep.edu

solve. However, if this is how q depends on time, there
is nothing we can do about it.

In many other cases, however, we do not know
the shape of the dependence. In such cases, it is
also desirable to come up with a general formula
f(t, c1, . . . , cn) – with not-too-many parameters ci –
that would adequately describe the dynamics of the
quantity of interest. In such situations, it is reasonable
to select a family for which the corresponding system
of equations (1) is the easiest to solve – i.e., is a system
of linear equations. For this purpose, we select a fam-
ily for which the dependence f(t, c1, . . . , cn) is linear
in terms of the unknowns, i.e., for which

f(t, c1, . . . , cn) =

f0(t) + c1 · f1(t) + . . .+ cn · fn(t) (2)

for some functions fi(t).
Such representations are indeed actively used in data

processing. For example, for a smooth dependence
q(t), it is reasonable to approximate it by a polynomial
– i.e., by the sum of the first few terms of its Taylor
expansion. In this case, the functions fi(t) are mono-
mials tj corresponding to non-negative integers j. For
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a periodic process with a known period T , we can use
sines and cosines sin(j · ω · t) and cos(j · ω · t) for
non-negative integers j, where ω = 2π/T , etc.

However, many physical processes – e.g., seismic
processes – are neither smooth nor periodical: they
consist of time-localized bursts of activity. To describe
such processes, it makes sense to use similarly time-
localized functions fi(t). Such functions are known as
wavelets; see, e.g., [5,6,12,14].

From generic wavelets to Daubechies wavelets. One
of the computational advantages of Fourier series –
i.e., of representing the desired dependence as a linear
combination of sines and cosines – is that all the func-
tions fi(t) used in this approximation can be obtained
from each other by scaling and shift, i.e., they all have
the form fi(t) = f0(ai · t+ bi) for some values ai and
bi, where f0(t)

def
= sin(ω · t).

It turns out that we can select wavelets that satisfy a
similar property – namely, we select the basic function
φ(t) known as the mother wavelet, and take the func-
tions fi(t) of the form φ(2j · t − ℓ), where j ≥ 0 and
ℓ are integers. (There are also similar functions gener-
ated by another related function, known as the father
wavelet.) For the resulting functions fi(t) to be effi-
cient in representing and processing data, the mother
wavelet must satisfy a certain linear functional equa-
tion.

This functional equation has many different solu-
tions. Empirically:

– wavelets corresponding to some solutions work
better, while

– wavelet corresponding to other solutions of the
functional equations do not work so well.

To select a single solution – and thus, to fix a fam-
ily of wavelets – we need to impose additional restric-
tions on the function φ(t). To make computations eas-
ier – and to preserve linearity of the corresponding sys-
tem of equation – it makes sense to impose restrictions
which are linear in terms of φ(t). A general such linear
restriction has the form∫

cm(t) · φ(t) dt = bm, m = 1, . . . ,M, (3)

for some function cm(t).
Once we know one solution φ0(t) to the system

(3) of linear equations, we can have an even simpler
system of linear equations for the difference ∆(t)

def
=

φ(t)− φ0(t):∫
cm(t) ·∆(t) dt = 0, m = 1, . . . ,M. (4)

Of course, once the equality
∫
c(t) · ∆(t) dt = 0

holds for all M functions c1(t), . . . , cM (t), the same
equality holds for all possible linear combinations

c(t) = s1 · c1(t) + . . .+ sM · cM (t)

of these functions, i.e., for the whole M -dimensional
linear space L of functions generated by the functions
cm(t). From this viewpoint, the condition (4) can be
described as requiring that∫

c(t) ·∆(t) dt = 0

for all functions c(t) from an M -dimensional linear
space of functions. Thus, the selection of a specific
wavelet family means selecting an appropriate linear
space L.

Ingrid Daubechies proposed to use cm(t) = tm−1,
i.e., equivalently, to take, as L, the linear space of all
polynomials

c(t) = a0 + a1 · t+ . . .+ aM−1 · tM−1

of order less than M ; see, e.g., [6]. The resulting
wavelets are known as Daubechies wavelets.

Empirical fact. Daubechies wavelets perform very
well in many practical applications: in civil engineer-
ing (see, e.g., [10]), in power systems engineering (see,
e.g., [4]), in biomedical engineering (see, e.g., [11]),
and in signal and image processing in general; see,
e.g., [7,9].

In particular, in many problems related to process-
ing seismic signals, Daubechies wavelets work very
well, much better than many other wavelet families;
see, e.g., [1,2,3,8,15,16] and references therein.

What we do in this paper. In this paper, we provide a
possible theoretical explanation for the empirical suc-
cess of Daubechies wavelets.

Specifically, we show that these wavelets are op-
timal with respect to any optimality criterion that
satisfies the natural properties of scale- and shift-
invariance.

The structure of the paper is as follows. In Section 2,
we analyze the problem and, as a result of this analysis,
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formulate this problem in precise mathematical terms.
Section 3 contains the main result – an explanation of
why Daubechies wavelets are optimal – and the proof
of this result.

2. Analysis of the problem

We need to select an M -dimensional linear space.
As we have mentioned earlier, selecting a family of
wavelets is equivalent to selecting an M -dimensional
linear space L of functions. In these terms, the question
is:

What is the optimal selection of an M -dimensional
linear space of functions?

We will only consider smooth (differentiable) func-
tions c(t). In wavelet analysis, the corresponding func-
tions c(t) are differentiable. In view of this, in this pa-
per, we will also limit ourselves to the case when all
the functions a(t) from the linear space L are differen-
tiable.

Comment. This diffentiability requirement makes sense:
e.g., it is known that every continuous function c(t) can
be approximated, with any given accuracy, by smooth
functions. Since from the practical viewpoint, a very
small difference is not noticeable, it thus makes sense
to assume that all the functions c(t) are differentiable.

However, a reader should be warned that it is
not possible to follow this argument too far: Actu-
ally, some wavelets are not smooth. Even Daubechies
wavelets of higher order M , while smooth, are not
infinitely differentiable: if we differentiate the corre-
sponding mother wavelet again and again, we will
eventually reach a function which is not differentiable
at some points.

What does “optimal” mean. Usually, when we say
that an alternative Aopt is optimal, it means that:

– there is a numerical characteristic F (A) describ-
ing the imperfection of different alternatives, and

– the alternative Aopt has the smallest value of this
characteristic.

For example, for different wavelet families A, we can
take, as F (A), the mean squared accuracy with which
the use of the first few wavelets from this family ap-
proximates signals from the given set of signals.

However, this is not the only way to describe opti-
mality. In the above example, we may have several dif-
ferent families with the same smallest possible value of
the mean squared accuracy. In such a case, we can use
this non-uniqueness to minimize some other character-
istic G(A): e.g., the average computation time needs
to get the corresponding approximation. We then say
that the alternative A is better or of the same quality as
an alternative B – we will denote it by A ≤ B – if:

– either F (A) < F (B),
– or F (A) = F (B) and G(A) ≤ G(B).

If this additional numerical criterion does not lead to
a unique selection of an alternative, we can minimize
something else, etc., until we reach the final optimal-
ity criterion – for which there is exactly one optimal
alternative.

No matter how complex our comparison, in all these
cases, we have a relation A ≤ B between the two alter-
native describing that A is better or of the same quality
as B.

Of course, each alternative has the same quality as
itself A ≤ A, and if A ≤ B and B ≤ C, then A ≤ C.
Thus, we arrive at the following definition.

Definition 1. Let A be a set. Its elements will be called
alternatives.

– By an optimality criterion, we mean a binary re-
lation ≤ on this set which satisfies the following
two properties:

* for every A ∈ A, we have A ≤ A (reflexivity),
and

* for all A,B,C ∈ A, if A ≤ B and B ≤ C,
then A ≤ C.

– An alternative Aopt is called optimal with respect
to the optimal criterion ≤ if we have Aopt ≤ A
for all A ∈ A.

– An optimality criterion ≤ is called final if for this
criterion, there exists exactly one optimal alter-
native.

Natural invariance properties. We are interested in
describing how a quantity changes with time. We de-
scribe this dependence in numerical terms, as a depen-
dence q(t) of the numerical value of the quantity q on
the numerical value of time t.

However, the numerical value of time depends on
the selection of the measuring unit and on the selection
of the starting point. If we replace the original unit with
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a new one which is a times smaller – e.g., consider
seconds instead of minutes – then all numerical values
of time are multiplied by a. The corresponding linear
transformation t 7→ a · t is known as scaling.

Similarly, if we replace the original starting point
for measuring time with a new starting point which is
t0 moments earlier, then this value t0 will be added to
all numerical values of time. The corresponding linear
transformation t 7→ t+ t0 is known as shift.

In general, if we change both the unit and the start-
ing point, we replace t with a · t + t0 – i.e., we get a
linear transformation.

The numerical values change, but the physical pro-
cess remains the same. From this viewpoint, it is rea-
sonable to require that the relative quality of two dif-
ferent methods should not change if we simply change
the unit and/or the starting point. In terms of linear
spaces – that describe different wavelet families – we
thus arrive at the following definition.

Definition 2.

– By a linear transformation, we mean a function
T (t) = a · t+ t0 for some values a and t0.

– For each linear transformation T and each func-
tion e(t), by the result T (e) of applying T to e we
mean a function e(T (t)).

– For each M -dimensional linear space L of smooth
functions, by the result T (L) of applying T to L
we mean the linear space formed by the functions
T (e) for e ∈ L.

– We say that the optimality criterion ≤ on the set
L of all M -dimensional linear spaces of smooth
functions is invariant if for every two spaces,
L1 ≤ L2 implies that T (L1) ≤ T (L2).

Now, we can formulate our main result.

3. Main result

Proposition. For every final invariant optimality cri-
terion on the set of all M -dimensional linear spaces
of smooth functions, all elements of the optimal family
Lopt are polynomials of order less than M .

Comments.

– Thus, we have indeed proven that the linear space
corresponding to Daubechies wavelets is optimal
– and thus, so, in this sense, Daubechies wavelets
are optimal.

– The following proof follows ideas first described
in [13].

Proof. Let us first prove that the optimal family Lopt

is itself invariant, i.e., that T (Lopt) = Lopt.
Indeed, the fact that Lopt is optimal means that

Lopt ≤ L for all families L, in particular, for all fam-
ilies of the type T−1(L), where T−1 is the inverse
transformation. So, Lopt ≤ T−1(L) for each L. By us-
ing invariance of the optimality criterion, we conclude
that T (Lopt) ≤ L for every L, i.e., that the linear space
T (Lopt) is also optimal. However, the optimality cri-
terion ≤ is final, which means that there is only one
optimal space, so indeed, T (Lopt) = Lopt.

Let us now select any basis e1(t), . . . , eM (t) in
the optimal linear space. Invariance of the linear space
Lopt means, in particular, that for each i and for each
t0, the shifted function ei(t + t0) also belongs to this
linear space, i.e., that

ei(t+ t0) =

M∑
j=1

Cij(t0) · ej(t) (5)

for some coefficients Cij depending on t0. If we select
M different moments of time t1, . . . , tM , we get a sys-
tem of M linear equations to determine these coeffi-
cients Cij(t0) in terms of the functions ej :

ei(t1 + t0) =

M∑
j=1

Cij(t0) · ej(t1);

. . . (6)

ei(tM + t0) =

M∑
j=1

Cij(t0) · ej(tM ).

In general, the solution of a system of linear equations
is a linear combination of the left-hand sides. The left-
hand sides ei(tk+t0), k = 1, . . . ,M are differentiable
functions of t0, thus, all the coefficients Cij(t0) are
also differentiable. So, all the functions in the formula
(5) are differentiable. Thus, we can differentiate both
sides with respect to t0, and get

e′i(t+ t0) =

M∑
j=1

C ′
ij(t0) · ej(t). (7)
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In particular, for t0 = 0, we get

e′i(t) =

M∑
j=1

cij · ej(t), (8)

where we denoted cij
def
= C ′

ij(0). So, for M functions
e1(t), . . . , eM (t), we have a system of M linear differ-
ential equations with constant coefficients.

It is known that a general solution to such a system
is a linear combination of expressions of the type tk ·
exp(α · t), where:

– the value α is an eigenvalue of the matrix ∥cij∥,
and

– the value k is an non-negative integer which is
smaller that the multiplicity of this eigenvalue.

Similarly, another consequence of invariance is that
for every i and for every a, the function ei(a · t) also
belongs to the optimal space Lopt, i.e., that i.e., that

ei(a · t) =
M∑
j=1

Cij(a) · ej(t) (9)

for some coefficients Cij depending on a. If we select
M different moments of time t1, . . . , tM , we get a sys-
tem of M linear equations to determine these coeffi-
cients in terms of ej :

ei(a · t1) =
M∑
j=1

Cij(a) · ej(t1);

. . . (10)

ei(a · tM ) =

M∑
j=1

Cij(a) · ej(tM ).

In general, the solution of a system of linear equations
is a linear combination of the left-hand sides. The left-
hand sides ei(a · tk) are differentiable functions of t0,
thus, all the dependence of all the coefficients Cij(a) is
also differentiable. So, all the functions in the formula
(9) are differentiable. Thus, we can differentiate both
sides with respect to a, and get

t · e′i(a · t) =
M∑
j=1

C ′
ij(a) · ej(t). (11)

In particular, for a = 1, we get

t · e′i(t) =
M∑
j=1

cij · ej(t), (12)

where we denoted cij
def
= C ′

ij(1). Let us introduce an

auxiliary variable x
def
= ln(t), so that t = exp(x) and

dx = dt/t. Then,

t · dei
dt

=
dei
dt/t

=
dei
dx

,

so the formula (12) takes the form

dEi(x)

dx
=

M∑
j=1

cij · Ej(x), (13)

where we denoted Ei(x)
def
= ei(exp(x)). So, for M

functions E1(x), . . . , EM (x), we also have a system
of M linear differential equations with constant coef-
ficients, and thus, each of these functions is a linear
combination of the expressions of the type

xk · exp(α · x).

So, each function ei(t) = Ei(ln(x)) is a linear combi-
nation of functions

(ln t)k · exp(α · ln(t)) = (ln t)k · tα. (14)

One can check that the only way to have a function
representable both as a linear combination of these ex-
pressions (14) and a linear combination of expressions
tk · exp(α · t) is when in the formula (14), we have
k = 0 and α must be an integer. So, each function
ei(t) is a linear combination of monomials tk – i.e., a
polynomial.

To complete the proof, let us show that all polyno-
mials can only have degree < M .

Indeed, suppose that the optimal linear space Lopt

contains a polynomial of degree d, i.e., a function

e(0)(t) = a0 · td + a1 · td−1 + . . . ,

with a0 ̸= 0. The optimal linear space is invariant with
respect to shift, so for each h, the function e(0)(t+ h)
also belong to this space. Since Lopt is a linear space,
it also contains any linear combination of the two func-
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tions e(0)(t) and e(0)(t+ h), in particular, their differ-
ence

e(1)(t)
def
= e(0)(t+ 1)− e(0)(t). (14)

One can check that this difference is a polynomial

e(1)(t) = d · a0 · td−1 + . . . (15)

of degree ≤ (d− 1). By applying this difference again
and again, we get a polynomial

e(2)(t) = e(1)(t+ 1)− e(1)(t)

of degree ≤ (d− 2), etc., all the way to a polynomial

e(d)(t) = e(d−1)(t+ 1)− e(d−1)(t)

of degree 0, i.e., to a constant.
These d+ 1 polynomials e(0)(t), . . . , e(d)(t) are all

linearly independent: indeed, each linear combination

ci1 · e(i1)(t) + . . .+ cik · e(ik)(t)

for some i1 < i2 < . . . and all cij ̸= 0 starts with a
non-zero term proportional to td−i1 and thus, cannot
be identically 0.

According to linear algebra, in an M -dimensional
space, we can have no more than M linearly inde-
pendent elements, so here we have d + 1 ≤ M , thus
d ≤ M − 1, hence indeed d < M .

The proposition is proven.
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