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Why Rectified Linear Neurons:
Two Convexity-Related Explanations

Jonatan Contreras, Martine Ceberio, Olga Kosheleva,
Vladik Kreinovich, and Nguyen Hoang Phuong

Abstract At present, the most efficient machine learning technique is deep learn-
ing, in which non-linearity is attained by using rectified linear functions so(x) =
max(0,x). Empirically, these functions work better than any other nonlinear func-
tions that have been tried. In this paper, we provide a possible theoretical explanation
for this empirical fact. This explanation is based on the fact that one of the main ap-
plications of neural networks is decision making, when we want to find an optimal
solution. We show that the need to adequately deal with situations when the corre-
sponding optimization problem is feasible — i.e., for which the objective function is
convex — uniquely selects rectified linear activation functions.

1 Formulation of the Problem

Rectified linear neurons are very successful. At present, the most successful
machine learning technique is deep neural networks; see, e.g., [4]. In general, in
neural networks, signals go through two types of transformations: linear transfor-
mations and non-linear transformation described by the so-called activation func-
tion x — s(x).

Deep neural networks mostly used rectified linear (ReLU) activation functions

so(x) = max (0, x). (1)
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The main reason for this choice is that empirically, these activation function have
been most successful.

But why are they successful? From the theoretical viewpoint, this empirical suc-
cess is a challenge: why are these activations functions more successful than others?
Are there activation functions that we have not tried yet — which will be even more
successful?

Important comment. Before we start analyzing this question, we should mention
that the fact that we have linear transformations before and after each application of
an activation function implies that the same results that we obtain by using rectified
linear activation function so(x) can also obtained by neurons that use shifted and
scale versions of this function:

sl(x):bo—i-bl-x+b2-so(a0+a1-x)7 (2)
i.e., if we use functions of the type:
s1(x) =bo+a— - (x—xp) for x < xp; (3)

s1(x) = by + a4 - (x —xg) for x > x, (4)
corresponding to some values by, a_, a, and xp.

What is known and what we do in this paper. There are some theoretical expla-
nations of why rectified linear neurons are so successful: e.g., in [2, 7, 8], it was
proven that the rectified linear activation functions are, in some reasonable sense,
optimal. This explanation is based on the idea that the relative quality of different
data processing techniques — in particular, the relative quality of neural networks us-
ing different activation functions — should not change if we change all the numerical
values by changing the measuring units and/or the starting points for measuring the
corresponding quantities.

In this paper, we provide yet another theoretical explanation for this empirical
success — this time, an explanation based on computational efficiency and convexity.

2 Why Convexity

Need for optimization. In practice, we always want to find the best possible so-
lution. In precise terms, which solution is better and which is worse is usually de-
scribed in numerical terms, by assigning a number to each possible solution, so that
a solution with the largest (or smallest) value of this numerical characteristic is the
best. The mapping that assigns such a number to each alternative x is known as
the objective function f(x). For example, a company tries to maximize its profit, an
environmental agency tries to minimize the overall pollution, etc.

In general, as the above examples show, we can have both maximization and
minimization problems. However, the problem of maximizing an objective function
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. . IV . def T
f(x) is equivalent to minimizing the function g(x) = — f(x). Thus, all optimization
problems can be easily reduced to minimizations. So, without losing generality,
mathematicians usually only talk about minimization problems.

Need for convex optimization. In general, optimization is NP-hard (see, e.g.,
[9, 14]), meaning that unless P=NP (which most computer scientists believe to be
impossible), no feasible algorithm can solve all optimization problems. There is
an important class of optimization problems for which optimization is feasible: the
class of all convex optimization problems (see, e.g., [10, 11, 14]), in which the min-
imized functions f(x) is convex, i.e., satisfies the condition

flaxt(l—a)X)<a fx)+(1-a) fx) (5)

for all x, x', and for all & € [0, 1].

Moreover, it has been proven that convex functions are, in some reasonable sense,
the largest class of functions for which optimization is feasible: once we add some
non-convex functions to this problem, the optimization problem becomes NP-hard;
see [6].

This result will underlie our two explanations.

3 First Convexity-Related Explanation

How is all this related to neural networks. One of the main applications of neural
networks is to make decisions. For this purpose, we need to train the neural net-
work to predict, for each possible action, the consequences of this action. In other
words, we want, given the parameters x that characterize the possible decision, to
compute the value f(x) of the objective function that characterizes this decision. For
the simplest neural networks, this means that we approximate the original function
f(x1,...,x,) by a linear combination of the output of non-liner neurons:

fOaa, o xn) =) Wies Wi+ Xi —wgo | — Wo. (6)

n

I

i=1

For multi-layer neural networks, the corresponding expression is more complicated.

Towards resulting natural requirements on the activation function. Once we
train the neural network to compute the value of the objective function, a natural
next step is to find the alternative x that minimizes this objective function. Since,
as we have mentioned, optimization is only feasible for convex objective functions,
it makes sense to make sure that the expression (6) — and a similar expression for
multi-layer neural networks — preserve convexity as much as possible.
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In other words, if the actual activation function is convex, we want to make sure
that this convexity is, in some reasonable sense, preserved in an approximating ex-
pressions like (6).

First requirement. The above idea means, in particular, that for the simplest case
when one neuron is sufficient, the activation function s(x) itself must be convex.

Comment. The rectified linear activation function (1) itself is convex, so it satisfies
this requirement.

On the other hand, there are many other convex functions, so this requirement
does not uniquely determine the rectified linear function. For this unique determi-
nation, we need to come up with additional requirement(s).

Second requirement. It is known that if functions f(x), ..., f,(x) are convex, then
their convex combination

Jx) =wi-filx) +... +wk - fx(x), (7)

K

where wy > 0 and Y. wy = 1, is also convex. Moreover, any linear combination
k=1

with non-negative coefficients is convex, even when the sum of these coefficients is

different from 1. On the other hand, if we allow even one of the coefficients to be
negative, then we already get non-convex functions. So, the only way to make sure
that a linear combination of convex functions is convex is to make sure that all the
coefficients wy are non-negative.

It is therefore reasonable to require that every convex function f(x) — at least
every convex function of one variable — be representable as a linear combination of
activation functions with non-negative coefficients. This is our second requirement.

Let us analyze what are the activation functions that satisfy this requirement.

Let us recall the usual calculus-based characteristics of convexity. It is known
that a differentiable function f(x) is convex if and only if its second derivative f”(x)
is everywhere non-negative f”(x) > 0. Not all convex functions are everywhere
differentiable — e.g., the rectified linear activation function sy(x) is not differentiable
at the point x = 0. However, for such function, we can consider, as derivatives,
generalized functions (also known as Schwartz distributions), which are limits of
usual functions; see, e.g., [3, 5]. The most well-known generalized function is a
delta-function §(x) which is equal to O for all x 0 and which tends to « at x = 0;
such functions are used in physics to describe, e.g., point-wise particles and objects;
see, e.g., [1, 12]. In particular, the derivative s6 (x) of the rectified linear function
is equal to O for x < 0 an to 1 for x > 0, and the second derivative is exactly the
delta-function.

For a linear combination of functions (7), its second derivative is equal to the
linear combination of its second derivatives, with exactly the same coefficients wy:

) =wi- fl' %)+ +wg - fr(x). (8)
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So, in terms of the second derivatives, the above second requirement means that ev-
ery non-negative (generalized) function can be represented as a linear combination
of the functions corresponding to second derivative of the activation function s(x) —
and of its shifted and scaled versions s(ag +aj - x).

Now we can prove that only rectified linear activation function satisfies both
our requirements. If the second derivative s”(x) of an activation function s(x) dif-
fers from O for at least two different values x # x/, then this property remains true for
any convex combination of shifted and scaled versions of this activation function.
Thus, this way, we will never get a convex function for which the second derivative
is non-zero only for one value x — e.g., the rectified linear function so(x).

On the other hand, if we select the rectified linear function so(x) as an activation
function, then we have s{j(x) = 8(x). In this case, any non-negative function f”(x)
can be represented as a linear combination of shifted versions of s;(x): indeed,

0= [ 1'0)-8G=ydy= [ 1"0) 56—y (9)

and thus, the function f(x) can be represented as a similar linear combination of the
shifted versions of so(x) — plus possibly some linear terms:

£ =bo+brex+ [ 1) s0(x=3)dy (10

In general, our second requirement is satisfied by any convex function for which
the second derivative is different from 0 only for one value x = xy. This second
derivative can therefore be described as

s"(x) =c-8(x—xo), (11)
for some ¢ > 0. Integrating twice the equality (11), we conclude that
s(x) =bo+by-x+c-so(x—xp), (12)

for some values sp and s;. One can check that this is exactly the expression (2-4),
i.e., that indeed, the above two natural convexity-related requirements naturally lead
to the rectified linear activation functions.

4 Second Convexity-Related Explanation

Let us consider a more general setting. Out of the above two requirements, the
first one looks more convincing, the second one is somewhat less convincing. Let
us therefore consider a more general setting, when we still postulate the first re-
quirement — i.e., we still consider only convex activation functions — but instead of
postulating the second requirement, we want to find the activation function which is
the best in some sense, i.e., for which the corresponding objective functional F'(s)
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describing the relative qualities of different convex activation functions s(x) — attains
its smallest possible value.

What calculus tells us. In general, a maximum or minimum of a function on a
multi-D domain is attained either inside this domain — in which case it is a stationary
point of this function — or on its boundary. When the domain is relatively small, the
probability that a global stationary point is inside this domain is very small, so it is
reasonable to assume that the minimum is attained on the boundary.

This general conclusion can be applied to our case when we optimize a functional
F () on the domain of all convex functions s. Indeed, most functions are not convex.
So, in the space of all possible functions, the domain of all convex functions is
indeed small.

Similarly, if the domain’s boundary contains a flat face-type part — as when the
domain is a polytope — then it is reasonable to assume that the minimum is attained
not in the interior of this face, but on its boundary. If this boundary also contains
a flat part — as in the case of a polytope where the boundary of a face consists of
edges — we can similarly conclude that the minimum is most probably attained at
the boundary of this part — e.g., for a 3-D polytope, at one of the vertices.

In general, we can conclude that the minimum is most probably attained at one
of the extreme points of the original domain —i.e., a point that cannot be represented
as a convex combination of other points from this domain.

Comment. For a precise mathematical description of this idea, see [13].

What this implies for optimal activation functions. We want to select an activa-
tion function. In this case, the domain is the set of all convex functions. What are
the extreme elements of this domain?

We have already shown that any convex function s(x) whose second derivative
differs from O at least 2 different points can be represented as a convex combination
of other convex functions — namely, shifted rectified linear functions. Hence, such
functions s(x) are not extreme elements of our domain. Thus, the only extreme el-
ements of this domain are convex functions whose second derivative differs from 0
only at one point — which are, as we have shown, exactly rectified linear functions.

Since, with high probability, only extreme elements can be optimal, we conclude
that with high probability, only rectified linear functions can be optimal — no matter
what optimality criterion we used. Thus, we have indeed provided a second theoret-
ical justification for the success of rectified linear activation functions.
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