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Abstract: Many quantum algorithms have been proposed which are drastically more efficient that
the best of the non-quantum algorithms for solving the same problems. A natural question is: are
these quantum algorithms already optimal — in some reasonable sense — or they can be further
improved? In this paper, we review recent results showing that many known quantum algorithms
are actually optimal. Several of these results are based on appropriate invariances (symmetries).

Keywords: quantum computing; optimal algorithms; invariance; symmetry

1. Formulation of the Problem
1.1. Need for quantum computing

Modern computers are extremely fast, but still there are many practical problem
that require even faster computations. For example, high-performance computers, after
computing for several hours, help us come up with a reasonably accurate prediction of
tomorrow’s weather. It turns out that similar algorithms can help us predict where a
tornado will turn in the next 15 minutes — but this computation also requires several
hours on modern computers, too late for this prediction to be practically useful.

How can we make computer faster? There are many interesting engineering ideas
how to do it, but there is also a fundamental limitation — that, according to relativity
theory, nothing can travel faster than the speed of light ¢ = 300000 km/sec; see, e.g., [9,
33]. For a usual laptop which is about 30 cm in size this means that it takes 10~ seconds
— 1 nanosecond - for a signal to go from one side of the laptop to the other. During this
time, a usual 4 GHz laptop already performs 4 operations. From this viewpoint, the only
way to make computer substantially faster is to make them significantly smaller.

Already in modern computers, each memory cell is very small —up to 10 nanometers
(nm), comparable with the nm size of a single molecule. As a result, each cell contains
several thousand molecules. If we make cells even smaller, their size will be comparable
with the size of a single molecule. At such sizes, we can no longer use Newtonian
mechanics, we need to take into account that the micro-world is governed by different
equations — the equations of quantum physics [9,33]. Computing on such a level is
known as quantum computing

1.2. Need for quantum algorithms

One of the important challenges of quantum computing is that in quantum physics —
in contrast to Newtonian physics — the results are non-deterministic: we can only predict
the probabilities of different outcomes. The classical example of such a probabilistic
uncertainty is radioactivity, one of the first observed quantum phenomena: we can
predict the probability that an atom will decay — and thus, accurately predict the amount
of radiation — but we cannot predict at which moment of time each individual atom will
decay.

Because of this probabilistic uncertainty, we cannot simply use the usual algorithms
on the micro-level: we will then, in general, get different results with different probabili-
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ties, while in computations, we usually want to come up with a single result. Thus, we
need to develop new algorithms.

1.3. Quantum algorithms: successes

Quantum algorithms have indeed been successfully developed for solving all funda-
mental aspects of computation needs; see, e.g., [26,35]. Not only the resulting algorithms
produce deterministic (or almost deterministic) results, many of them compute these
results even faster than the best non-quantum algorithms for solving the same problems.

To briefly describe these successes, let us recall what are the fundamental computa-
tion needs. To enumerate these needs, let us recall what we humans want.

e  We want to understand how the world works, to predict what will happen — this is,
crudely speaking, what science is about. For example, we want to predict where
the tornado will turn.

e  We also want to understand how can we improve the situation — this is, crudely
speaking, what engineering is about. For example, how can we make tornadoes
change their course? How can we make houses less vulnerable to tornadoes?

e Finally, we want to communicate — or not — with others, so we need to develop
techniques for communication only with the intended folks.

Quantum algorithms are useful in solving all these main problems of science and engi-

neering:

e In the general prediction problem, we need to find a model that fits all the ob-
servations. In a usual engineering problem, we need to find a design and/or a
control that satisfies a given specification. In most of these problems, once we have
a model, a design, or a control, it is computationally feasible to check whether this
model, design, etc. satisfies the given specifications, it is searching for a satisfactory
model, design, etc. which is computationally intensive. There exists a quantum
algorithm that speeds us such a search. This algorithm — proposed by Lev Grover -
finds an element in an unsorted list in time /1, which is much faster than n steps
needed in the non-quantum case [16,17,26,35]. Quantum algorithms are also useful
in optimization.

e An additional way to speed up computations comes from the fact that in prediction
problems — such as predicting tomorrow’s weather — to be on the safe side, we take
into account today’s meteorological data in all nearby locations, even though most
of this data is actually irrelevant. To speed up computations, it is desirable to decide
which inputs and relevant and which are not. In this analysis, quantum computing
also help — namely, we can use Deutsch-Jozsa algorithm; see, e.g., [26,35].

e  Finally, special algorithms have been developed for quantum communications —
which is especially important since it is known that by using quantum computing,
we can break the RSA encryption (and similar encryptions) — and these encryptions
are behind most of the current computer security techniques [26,29,30,35].

1.4. Quantum algorithm: remaining challenges and what we cover in this paper

As we have mentioned, the existing quantum algorithms work very well. However,
a next natural question is: are these algorithms optimal — in some reasonable sense —
or we can do better? In this paper, we overview several results that show that many
quantum algorithms are indeed optimal. These proofs are based on the invariance
(symmetry) techniques.

Of course, these results are just the beginning of the study. Quantum computing
is a developing field, many new algorithm are being developed all the time, and, as
quantum computers will become practical, this will definitely further boost the invention
of new algorithms. We hope that the results reviewed in this paper will help researchers
to analyze the optimality of other quantum algorithms as well.
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1.5. Structure of this paper

We start, in Section 2, with a brief reminder of the quantum basics — basics which
are needed to understand the main ideas behind the existing quantum algorithms and
behind the proofs of their optimality. In Section 3, we describe the relation between
optimality — that we want to prove — and symmetries — i.e., invariance with respect
to different transformations. After that, we present the proofs of optimality of differ-
ent quantum algorithms for quantum data processing: Grover’s algorithm in Section
4, parallel-related teleportation algorithm in Section 5, and an optimization-related
quantum annealing algorithm in Section 6.

It should be mentioned that other quantum algorithms are also known to be optimal:
optimality of Deutsch-Josza algorithm is proven in [20] Deutsch-Josza, and optimality of
quantum communication algorithm in [15].

2. Quantum basics
2.1. Quantum states

In “classical” (= non-quantum) physics, each object, each system can be in different
states s, s', ... In quantum physics, such classical state are denoted by [s), |s'), etc. An
unusual feature of quantum physics is that, in addition to such states, we can also have
superpositions of such states, i.e., states of the type

c-lsy+c sy +..., (1)
where ¢, ¢/, ...are complex numbers for which
P+ P +... =1, (2)

where, as usual, for a complex number ¢ = a + b - i, its modulus c| is defined as
|c| = Va2 + b2. If the system is in the state (1), and we use a classical measurement
instrument to measure the state, then:

e we will get state s with probability |c|?,

e  we will get state s’ with probability |c|?, etc.

These probabilities should add up to 1, which explains the formula (2).

In particular, a quantum analogue of a bit (binary digit) —i.e., of a system that can
be in two different states 0 and 1 —is a quantum but (qubit, for short) that can be in any
state

co - [0) +c1-[1), (3)

where ¢y and c¢; are complex numbers for which
lco? +[er|? = 1. (4)

In the state (3), the probability that we will observe 0 is |cp|?, and the probability that we
will observe 1 is equal to |c1|?.

Similarly, for a 2-bit system — which in classical physics, can be in 4 different states
00, 01, 10, and 11 — a general quantum state is equal to

coo - [00) 4 co1 - |01) +c10 - [10) +cq7 - [11). (5)

In principle, we can have general complex numbers. Interestingly, in most quantum
algorithms, only real-valued coefficients c, ¢/, ...are used. An explanation of this is
provided, e.g., in [2].
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2.2. Quantum measurements

In general, if we have n classical states sy, ...,5,;, and we want to detect, in a
quantum state ) «; - s;, which of these states we are in, we get each s; with probability
|a; \2 —and once the measurement process detects the state s;, the actual state turns into s;.

Instead of the classical states sy, ..., we can use any other sequence of states sg =
Y tij - sj, as long as they are orthonormal (= orthogonal and normal) in the sense that:

P = R

o foreachi, wehave ||s/||* = 1, where ||s]

Y \tij|2 (normal), and
i

) &

e foreachiand 7, we haves; L s/, ie., (sj|s,) = 0, where (s]|s/, Ltij - £
]

(orthogonal).

In this case, if we have a state )"« - s, then with probability |a! 2 the measurement

result is s/ and the state turns into s. l

In general, instead of a sequence of orthogonal vectors, we can have a sequence
of orthogonal linear spaces Ly, Ly, ...— where L; 1 L; means thats; € L; and s; € L;
implies s; L s;. In this case, every state s can be represented as a sum s = }_s; of the
vectors s; € L;. As a result of the measurement, with probability ||s;|?, we conclude that
the state is in the space L;, and the original state turns into a new state s;/||s;||.

2.3. Composite systems

A 2-bit system is the simplest example of a composite system, when we consider two
independent subsystems as a single system. In classical physics, if the first system is in
one of the states s, s/, ..., and the second system is in one of the states t, t/, ..., then the
set of all possible states of the composite system is the set of all the pairs (s, t) — which is
also known as a Cartesian product S x T of the set S = {s, s/, ...} of possible states of the
first system and the set T = {¢,t/,...} of possible states of the second system.

In quantum physics, if the first system was in the general quantum state (1) and the
second system is in a similar quantum state

a-|ty+a-|¥y+..., (6)

then the state of the composite system — known as the fensor product of the states (1)
and (6):

(c-lsy+c-|sh+..)@- |ty+d - |)Y+...), (7)
is equal to
coa-ls,ty+c-a sty +...+ca- sty +ad )Y+ (8)
In particular, for classical states, e.g., whenc =a=1and ¢ =... =a' = ... =0, we get
|s) @ [t) = [s, ).

Comment. It should be mentioned that the transformation of two states of subsystems
into a single state of a composite system is linear in each of the values ¢, ¢, ..., and a, @/,
... This linearity comes from the need to make sure that for the independent subsystems,
the probability of observing (s, t) is equal to the product of the probabilities of observing
s and ¢t. This is true for the formula (8), when this equality follows from the fact that for
every two complex numbers ¢ and a, we have |c - a|? = |c|? - |a|?.

2.4. How quantum states change

States may change with time. In quantum physics, all changes are linear — for the
same reason why composition of two states is linear. In other words, each state

c1-ls1)+ .. +cnlsn) 9)
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is transformed into the state

¢l ls1) 4. sn), (10)
for which ;
;=Y Tj-¢ (11)
=1
for some coefficient T;;. The matrix T = ||Tj;| is unitary: T'T = TT' = I, where [ is the
unit matrix, and T;; def T;, where c* denotes complex conjugate: (a + b -1)* b

Note that every such transformation is reversible: once we apply the transformation
T, we can then apply the transformation T* and, due to the property T'T = I, get back
the original state.

For 1-qubit systems, one of such transformation is Hadamard transformation H for
which

. et Loy 1
-[1); H(|1)) =107) = 7 0) 7 7). (11)

oy def 1 1
H(|0>>—|0>—ﬁ |0>+ﬁ

2.5. How functions are represented in quantum algorithms

In this section, we will deal only with functions y = f(x1, ..., x,) of boolean (0-1)
variables — since these are the basic functions implemented by different “gates”, of which
computers are built. We cannot simple represent these functions as transforming n
boolean values x; into a single boolean value y, since such transformation is, in general,
irreversible. For example, for the “and”-function y = f(x1, x2) = x1 & xp, if we know
that y = 0, we cannot uniquely reconstruct the original pair (x1, x):

e we could have (x1,x) = (0,0),
we could have (x1,x2) = (0,1), or
e we could have (x1,x;) = (1,0).

To make the corresponding transformation reversible, a function y = f(x1,...,x,)
is represented as

Tr(x1, X, y) = (X1, X0,y © f(x1,- ., X0), (12)

where a @ b is exclusive “or” — or, what is the same, addition modulo 2, an operation
for which0®0=1®1=0and 0®1 =1® 0 = 1. One can check that thus defined
transformation is reversible: namely, if we apply the transformation T twice, we get
back the original state (x1,...,x,,y) — simply because a & a = 0 for all a.

Comment. While this is the prevailing representation of functions in quantum computing,
it should be mentioned in some cases, a different representation is preferable; see,

eg., [11].

3. Relation Between Optimality and Invariance (Symmetry)
3.1. What is invariance (symmetry)

In many cases, there are some natural transformations that does not change the
system. This “not changing” is called invariance. For example, suppose that we have
an unsorted list, and we are looking for an element with a ceratin property in this list.
For convenience, we can denote one of the list’s elements by s;, another one by s,
etc., but in this problem, it does not matter which element is called s1, which s;, etc. —
any permutation 77 : {1,...,n} — {1,...,n} would retain the problem. Thus, in this
problems, permutations are invariances. In other problems, we will have other natural
invariances.

In physics, invariance is called symmetry — since it naturally generalizes geometric
invariances (symmetries); see, e.g., [33? ].
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4. What does “optimal” mean

Usually, when we talk about “optimal"”, we mean that on the set of all alternatives
A, A, ..., there is an objective function describing the quality of different alternatives, and
we are looking for the alternative A with the largest (or sometimes the smallest) value
of this objective function. For example, when we select between different quantum —
i.e., in general, probabilistic — algorithms for solving a given problem, we may want to
maximize that probability f(A) that the algorithm A will lead to the desired solution.

However, this is a somewhat simplified description of what we usually mean by
optimality. Often, there are several alternatives Ay, A, etc., with the exact same largest
value f(A1) = f(Az) = ... of the objective function. In this case, we can use this
non-uniqueness to optimize something else. For example, in the above case, we can
minimize the average time needed for the algorithm to finish. This means, in effect, that
the original optimality criterion is not final, we can modify it and come up with a new,
more complex criterion according to which an alternative A is better than the alternative
A" —we will denote itby A < A’-if:
o either f(A") < f(A)
e or we have f(A) = f(A’) and also g(A’) < g(A) for the additional objective

function g(A).

If this still leads to several equally optimal alternatives, we can use this non-uniqueness
to optimize something else — until we get to the final optimality criterion, for which there
is exactly one optimal alternative.

To simplify the analysis, it is useful to ignore all these objective functions f(A),
¢(A), etc., and to only consider what really matters: for each pair (A, A’), according to
this criterion:

e when we have A’ better than A (A < A’),
e when we have A better than A’ (A’ < A), and
e when A and A’ are equally good; we will denote it by A ~ A’

In precise terms, by an optimality criterion that the set A of all alternatives, we mean a
pair of relations < and ~ with the following natural properties:

o ifA< A and A’ < A”,then A < A”;
o ifA<A and A’ ~ A", then A < A”;
o ifA~A"and A’ < A", then A < A”;
o ifA~A"and A’ ~ A", then A ~ A”;
o if A~ A, then A’ ~ A;and
o if A < A, then we cannot have A ~ A’.
This pair of relations is known as a pre-order: it is similar to order, with the main difference
that we can have A ~ A’ without having A = A’
An alternative Agpt is called optimal if for every other alternative A, we have
A < Acopt or A ~ Agpt. An optimality criterion is called final if there is exactly one
alternative which is optimal with respect to this criterion.

4.1. For invariant criteria, optimal alternative is also invariant

In many cases, there exists a reversible transformation T : A — A —e.g., permuta-
tion — which does not change the situation. In this case, it makes sense to require that
this transformation will not change which alternative is better. In precise terms, we say
that an optimality criterion is T-invariant if the following conditions are satisfied:

o ifA<A, thenT(A)<T(A");
o ifA~A'thenT(A)~ T(A).
Many results from this paper used the following lemma (see, e.g., [25]):

Lemma. For every final T-invariant optimality criterion, its optimal alternative Aopy is also
T-invariant, i.e., T(Aopt) = Aopt-



Version June 25, 2021 submitted to Symmetry 7 of 17

231

232

233

234

236

237

238

239

260

261

262

263

264

Proof. The fact that Aopt means that for every A € A, we have either A < Aopt
or A ~ Agpt. In particular, this is true for T~1(A), i.e., either T"1(A) < Aopt or
T~1(A) ~ Agpt. Due to T-invariance, we can conclude that either A < T(Aopt) oOr
A ~ T(Agpt). This is true for every alternative A, which means that the alternative
T(Aopt) is also optimal. However, the optimality criterion is final, which means that
there is only one optimal criterion. Thus, indeed, T(Aopt) = Aopt- The lemma is proven.

Due to this lemma, if the optimality criterion is T-invariant, then to find optimal
alternative, it is sufficient to find T-invariant alternatives. Let us start checking optimality
with Grover’s algorithm.

5. Grover’s Algorithm Is Optimal
5.1. Formulation of the problem

We are solving the following problem. We have a list of elements ey, . . ., e,. We have
an algorithm f (i) that, given an element ¢; —i.e., in effect, the index i — checks whether
this element has the desired property. We want to find an element that has this property.
For simplicity, we will consider the case when there is exactly one such element .

Let us describe this problem is quantum computing-related terms. What we want
is an index iy of the desired element. In quantum computing terms, this means that we
want to end up in a state |ip). As we have mentioned, in general, quantum processes are
probabilistic, so instead of the exact state |iy), we may end up in a superposition state:

e [1) 4.t cig—n - fio = 1) 4 cig - lio) + Cig1 - o+ 1) + ...+ cu - [n). (13)

In quantum terms, the algorithm that checks whether a given element has the
desired property has the form T¢(|i,y)) = |i,y @ f(x)), i.e:
e fori#ip, wehave T(|i,0)) = [i,0) and T¢(]i, 1)) = |i, 1), while
° fori= io, we have Tf(|i0,0>) = |i0,1> and Tf(‘i0,1>) = |i0,0>.
In terms of the Hadamard states |0') and [1’), we get the following:
o for|0'), forall i, we have T¢(|i) @ |0')) = |i) ® |0);
o for [1'), foralli # iy, we have T¢(|i) ® [1')) = [i) ® [1'), while for i = iy, we have
Tt (lio) @ 1)) = —lip) @ [1).
So, for |0"), nothing changes, and for [1’), the additional bit |1’) remains the same, but
the previous state (13) changes to:

e 1)+ cigr - lio = 1) —cig - lio) +ciga - [lo+1) + ... 4 cn - ). (14)

Let us denote this transformation from (13) to (14) by U.
Our goal is to start with some state, and, by applying this transformation U and
some other transformation(s) S, eventually come up with the desired element .

5.2. Invariance (symmetry): reminder

As we have mentioned earlier, in this problem, the natural invariances (symmetries)
are invariances with respect to all possible permutations 7t : {1,...,n} — {1,...,n}. It
is therefore reasonable to require that our optimality criterion is invariant with respect
to all permutations. Due to the above Lemma, this implies that the optimal algorithm
should also be permutation-invariant, in particular:

e that the initial state should be permutation-invariant, and
e thatall transformations S should be permutation-invariant.
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5.3. Towards the optimal algorithm: which transformations are permutation-invariant?

The fact that the initial state is permutation-invariant means that ¢; = ¢y for all i and
i’ — since every two indices i and i’ can be obtained from each other by an appropriate
permutation. Thus, the initial state must have the form

c1-|1) +...+cq - |n), (14)

for some c;. Due to the normalization requirement (2), we have |¢1| = 1/+/n. In quantum
mechanics, states differing by a constant are considered the same state, so we can simply
take ¢c; = 1/+/n. Then the initial state takes the form:
1 1
T \1)+...+\/ﬁ |n). (15)
This is exactly the initial state of Grover’s algorithm.

A general transformation is describes by a matrix S;;. For this matrix, permutation
invariance means that all the elements S;; are equal to each other — similar argument as
before. Let us denote this common value by 4. Similarly, all the elements S;; with i # j
should also be equal to each other. Let us denote this common value by b. In these terms,
the corresponding linear transformation transforms the vector c; into a new vector

ci=a-ci+b-) cj (16)
7

This expression can be equivalently described as
def
¢i=(a—b)-ci+b-C, whereC= ) ¢ (17)
=1

We want to make sure that this transformation preserved the fact that the probabilities
add up to 1, i.e,, that

n
Yol =1 (18)
j=1

As we have mentioned earlier, it is sufficient to consider situations in which all the
coefficients ¢} are real numbers. In this case, |C; > = (C;)Z, and, due to (17), the condition
(18) takes the form

(a—b)z.(ic%)+2~(a—b)~b-c2+n-b2-c2—1, (19)

i=1

n
i.e., due to the fact that }_ clz =1, that
i=1

(a—b)*+2-(a—b)-b+n-b*)-C*=1. (20)
This equality has to hold for all C, so we must have
2-(a—b)-b+n-b>*=2-(a—b)+n-b)-b=0. (21)

If b = 0, then a = +£1, so the transformation S either leaves the state unchanged or
multiplies all the coefficient c; by —1 —i.e., in effect, also leaves the state unchanged. So, to
get a non-trivial transformation, we need to take b # 0. In this case, 2- (a —b) +n-b = 0;
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since, without losing generality, we can take a —b = 1, we get b = —2/n. Thus,
a= (a—0b)+b=1-2/n,and this transformation takes the form

c§:<1—i>~ci—i-2q. (21)

j#

This is also exactly the transformation used in Grover’s algorithm!

In what order shall we apply the algorithms U and 5? If we apply U twice or S
twice, we get back the same state. Thus, it makes sense to apply these two algorithms
interchangingly. The first application should be of U, since if we apply S to the initial
state, we get the same state multiplied by a constant. Thus, we arrive at the following
algorithm:

we start with the initial state (15);

then, we apply the transformation U;
after that, we apply the transformation S;
then, again we apply U; etc.

This is exactly Grover’s algorithm. Thus, the Grover’s algorithm is the only permutation-
invariant one. And since the optimal algorithm must be permutation-invariant, we
therefore conclude that Grover’s algorithm is optimal.

6. Parallelization: Teleportation Algorithm Is Optimal
6.1. Need for parallelization

From the theoretical viewpoint, the fact that, e.g., Grover’s algorithm is optimal is
interesting. However, from the practical viewpoint, the fact that we cannot improve this
algorithm constitutes a limitation on how fast we can compute — even if we use quantum
computing. In problems in which the Grover’s speed up is not sufficient, we need to use
other ideas to achieve a further speedup.

To further speed up computations, a natural idea is to have several quantum
computers working in parallel, so that each of them solves a part of the problem. This
idea is similar to how we humans solve complex problems: if a task is too difficult for
one person to solve — be it building a big house or proving a complex theorem — several
people team up and together solve the task.

6.2. Need for teleportation

To successfully collaborate, quantum computers need to exchange intermediate
states of their computations. Here lies a problem: for complex problems, we would
like to use computers located in different geographic areas, but a quantum state gets
changed when it is sent far away.

Researchers have come up with a way to avoid this sending, called teleportation.
There exists a scheme for teleportation [3,26,27].

6.3. What we do in this section

A priori, it is not clear how good is the current teleportation scheme: maybe there
are other schemes which are faster (or better in some other sense)? In this section, we
show that the existing teleportation scheme is, in some reasonable sense, unique — and,
in this sense, is the best. This result first appeared in [12].

6.4. Standard quantum teleportation algorithm: reminder
6.4.1. Need for communication

At one location, we have a particle in a certain state; we want to send this state to
some other location.

Usually, the sender is denoted by A and the receiver by B. In communications, it is
common to call the sender Alice, and to call the receiver Bob. States corresponding to
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Alice are usually described by using a subscript A, and states corresponding to Bob are
usually described by using a subscript B.

6.4.2. Communication is straightforward in classical physics but a challenge in quantum
physics

In classical (pre-quantum) physics, the communication problem has a straightfor-
ward solution: if we want to communicate a state, we measure all possible characteristics
of this state, send these values to Bob, and let Bob reproduce the object with these
characteristics. This is how, e.g., 3D printing works. This solution is based on the fact
that in classical (non-quantum) physics we can, in principle, measure all characteristic of
a system without changing it.

The problem is that in quantum physics, such a straightforward approach is not
possible: as we have mentioned, in quantum physics, every measurement changes the
state — and moreover, irreversibly deletes some information about the state. For example,
if we start with a state ag - |0) + a1 - |1), all we get after the measurement is either 0 or
1, with no way to reconstruct the values xp and «; that characterize the original state.
Since we cannot use the usual straightforward approach for communicating a state, we
need to use an indirect approach. This approach is known as teleportation.

6.4.3. What we consider in this section

In this section, we consider the simplest possible quantum state — namely, the
quantum analogue of the simplest possible non-quantum state. In the non-quantum
case, a system can be in several different states. The state passing problem makes sense
only when the system can be in at least two different states — otherwise, if we know
beforehand what state we want to send, there is no need to send any information, Bob can
simply reproduce the known state. The simplest case when communication is needed is
when the number of possible states is as small as possible but still larger than 1 —i.e., the
case when the system can be in two different states. In the computer, such situation can
be naturally described if we associate these two possible states with 0 and 1.

In these terms, the problem is as follows:

e Alice has a state
a0 - [0) +ay - [1) (22)

that she wants to communicate to Bob — a person at a different location.
e Asaresult of this process, Bob should have the same state.

6.4.4. Notations

Let us indicate states corresponding to Alice with a subscript A, and states corre-
sponding to Bob with a subscript B. The state (22) is not exclusively Alice’s and it is not
exclusively Bob’s, so to describe this state, we will use the next letter — letter C. In these
terms, Alice has a state

ag - [0)c + a1 - |1)c (23)

that she wants to communicate to Bob.

6.4.5. Preparing for teleportation: an entangled state

To make teleportation possible, Alice and Bob prepare a special entangled state:
1 1
V2 V2

This state is a superposition of two classical states:

+1041p) + —= - [140g). (24)

e the state 041p in which A is in state 0 and B is in state 1, and
e the state 140p in which A is in state 1 and B is in state 0.
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6.4.6. What is the joint state of A, B, and C at the beginning of the procedure

In the beginning, the state C is independent of A and B. So, the joint state is a tensor
product of the AB-state (24) and the C-state (23):

14 14
L 114050¢) + —k - |14051¢). (25)

& &1
— - |04150¢c) + —= - |04151c) +
|ABC> |ABC> \/E \/E

V2 V2

6.4.7. First stage: measurement

In the first stage of the standard teleportation algorithm, Alice performs a measure-
ment procedure on the parts A and C which are available to her. In general, to describe
the possible results of measuring a state s with respect to linear spaces L;, we need to
represent s as the sum

s=Y_si (26)

with's; € L;.

In the standard teleportation algorithm, we perform the measurement with respect
to the following four linear spaces L; = Lg ® t;, where Lp is the set of all possible linear
combinations of |0)p and |1)p, and the states ¢; have the following form:

1 1 1 1
1= —=-1040c) + —= - |[141¢c); th = — - |040¢c) — — - |[141¢);
1 \@‘AC> ﬁ|AC>2 ﬁ|AC> ﬁ\Ad
t _71 ~‘0 1 >+71 -|1 0 > t —71 -|0 1 >_71 ~‘l 0> (27)
3 \/E AlC \/i AYC/, b4 \/E ALlC \/E AYC/-

One can easily check that the states t; are orthonormal, hence the spaces L; are orthogonal.

To describe the result of measuring the state (25) with respect to these linear spaces,
we must first represent the state (25) in the form s =} _s;, with s; € L;. For this purpose,
we can use the fact that, due to the formulas (27), we have

1 1 1
1040c) = —= ty; [1ale) = —F= -t — —= t;
f Y V2 V2
1 1 1 1
04lc) = —= -t3+ —= - tg; 140 — - —= -t 28
10alc) 5t gh [140c) = ﬁ Vol (28)
Substituting the expressions (28) into the formula (25), we get
%'|1>B®(1‘t1+1't2)+ . (1 1-t4)—|—
V2 V2 V2 V2 V2
& 1 1 ) o <1 1 >
0@ (= ts— —= by )|+ = 0D =t ——=-ta),
ﬁ|>3(ﬁ3ﬁ4ﬁ|>gﬁlﬁz

thus
&o &1 &o X1
(Z11p)+ os)) @ 11 + (S 118) = 5H108) ) @ b2+

1 o N1 1 %)
(SH118)+52105)) & 3+ (5-[18) — 108) ) © ta.
So, we get a representation of the type (26), with

« « "‘ «
s1= (5 118)+ 5108)) @1, s2= (5 - [18) = 5+ [08) ) @ 12,

! u &
S3 = (— . |1B> + 70 . |0B>) ®t3, sS4 = (?1 ' |1B> - 70 : |OB>) ® ty.

Here, for each i, we have

1
(o> + aa|?) = T

1
2— _ —
Il = |2 + |4 =
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1

th i =5
us [sil = 5 1
So, with equal probability of 1 we get one of the following four states — and Alice

knows which one it is:
(ao - |1g) + a1 -10B)) @ t1; (ag - [1p) — a1 -|08)) @ t;
(0(1 . |1B> + g - |OB>) R t3; (0(1 . ‘13) — g - |OB>) R ty. (29)

6.4.8. Second stage: communication

On the second stage, Alice sends to Bob the measurement result. As a result, Bob
knows in which the four states (29) the system is.

6.4.9. Final stage: Bob “rotates” his state and thus, get the original state teleported to him
On the final stage, Bob performs an appropriate transformation of his state B.

e In the first case, he uses a unitary transformation that swaps |0) g and |1) g, for which
to1 = tip = land tgy = £11 = 0.

e In the second case, he uses a unitary transformation for which ty; = 1, tjp = —1
and tyy = t11 = 0.
In the third case, he already has the desired state.

e In the fourth case, he uses a unitary transformation for which fpp = —1, t17 =1,
and tor = t1p = 0.

As a result, in all fours cases, he gets the original state ay - |0)p + a1 - |1) 5.

6.5. The main result of this section: the standard quantum teleportation algorithm is, in some
reasonable sense, unique

6.5.1. Formulation of the problem

Teleportation is possible because we have prepared an entangled state (24), i.e., a
state s 4 in which the states of Alice and Bob are not independent, i.e., a state that does
not have a form s 4 ® sg. However, (24) is not the only possible entangled state. Let us
consider, instead, a general joint state of two qubits:

aoo + [0408) +ao1 - [041p) +a10- [1408) +a11 - [1alp). (3a)

What will happen if we use this more general entangled state instead of the one that is
used in the known teleportation algorithm?

6.5.2. Analysis of the problem
For the state (24a), the joint state of all three subsystems has the form

g - ago - [04080¢) + a1 - ago - [04081c)+
o - ao1 - [04180¢) + a1 - ag1 - [041p1c)+
g - a10 - |14080¢) + a1 - ayo - [140p1c)+ (25a)

wo - a11 - [14180¢) + a1 - a1 - [1alp1c).

Substituting expressions (28) into this formula, we get

4 b4
\%.aoo.|0>B®(t1+t2)+71§.a00.|O>B®(t3+t4)+
14 4
7%.1101.|1>B®(t1—|—t2)+71§.a01-|1>B®(t3+t4)—|—
2 %] X1
—=a10- |0V ® (tz —tg) + —-a19- [0)p ® (t — tp)+
NG 10 10) ® (t3 —ts) i 10-10)g ® (t1 — t2)
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399

400

402

a0 X1
— a1 D ® (tz —tg) + —= a1 - [1)p @ (1 — ta),
/2 11°[1)p @ (t3 — ta) /2 11| @ (h —t)

thuss =51 ®1t + S, ® 1t + ..., where

Xp-app , %1 -4ig X - ao1 a1 - a1
S1= + -10)p + + -|1)B,
= (g ) o+ (g + ) s

and Sy, ...are described by similar expressions.

This means that after the measurement, Bob will have the normalized state Sy /||S1]|.
To perform teleportation, we need to transform this state into the original state «g -
|0)g + a1 - |1) . Thus, the transformation from the resulting state S1/||S1]| to the original
state must be unitary. It is known that the inverse transformation to a unitary one is
also unitary. In general, a unitary transformation transforms orthonormal states into
orthonormal ones.

So, the inverse transformation that:

e  maps the state |0)p (corresponding to oy = 1 and a1 = 0) into a new state |1')p def

const - (agg - |0)g + a1 - |1)p), and

e  maps the state |1)p (corresponding to ap = 0 and a1 = 1) into a new state |0') def

const - (010 . |O>B +ar - |1>B)r
transforms two original orthonormal vectors |0)p and |1)5 into two new orthonormal
ones |0)pg and |1') .

In terms of these new states, the entangled state (24a) takes the form

const - (|0)4 ® [1")p+ [1)p ®]0") ).

From the requirement that the sum of the squares of absolute values of all the coefficients

1
add up to 1, we conclude that 2 - const? = 1. Then const = 7 and the entangled state

takes the familiar form

1

—-(100a® 1)+ 1)@ [0')p). 24
ﬁ(|>A|>B|>B|>B) (24)
This is exactly the entangled state used in the standard teleportation algorithm. So, we
can make the following conclusion.

6.5.3. Conclusion of this section

From the technical viewpoint, the only entangled state that leads to a successful
teleportation is the state (24) corresponding to the standard quantum teleportation
algorithm — for some orthornomal states |0')p and |1") 5.

Thus, we have shown that, indeed, the existing quantum teleportation algorithm is
unique — so we should not waste our time and effort looking for more efficient alternative
quantum teleportation algorithms.

7. Optimization: Quantum Annealing Schedules Are Optimal
7.1. Quantum annealing: ideas, successes, and challenges

One of the important practical problems is optimization. An important challenge
is that often, the existing optimization techniques lead to a local optimum. One way to
avoid local optima is annealing: whenever we find ourselves in a possibly local optimum,
we jump out with some probability and continue search for the true optimum. Since
quantum processes are probabilistic, a natural way to organize such a probabilistic
perturbation of the deterministic optimization is to use quantum effects, i.e., to perform
quantum annealing. This idea was first proposed in [10,19] and has been used successfully
since then.
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It turns out that often, quantum annealing works much better than non-quantum
one; see, e.g., see, e.g., [4-6,8,18,21,22,24,28,31,32,34]. Quantum annealing is the main
technique behind the only commercially available computational devices that use quan-
tum effects — D-Wave computers; see, e.g., [4,21,32].

The efficiency of quantum annealing depends on the proper selection of the an-
nealing schedule, i.e., schedule that describes how the perturbations decrease with time.
Empirically, it has been found that two schedules work best: power law and exponential
ones. In this section, following [14], we prove that these two schedules are indeed
optimal (in some reasonable sense).

7.2. Formulation of the problem

In general, the state of a quantum system is described by a complex-valued function
P(t) (known as the wave function), and the dynamics of a quantum system is described
by Schroedinger’s equations
99

i-h-=- = Hy, 30

in =y (30)
where, as before, i df S TandHisa corresponding linear operator. In these terms,
annealing-type modification means adding additional terms — decreasing with time — to
the operator H, i.e., replacing the original equation (30) with the modified equation

i o

S = Hy+ (1) Hoy, (31)

where Hj describes the deviation, and +y(¢) monotonically tends to 0 as t increases.

The efficiency of quantum annealing strongly depends on the proper selection of
the annealing schedule, i.e., the dependence of y(t) on time ¢t. Empirically, depending
on the specific optimization problem, two scheduled work the best:

e the power law annealing schedule y(t) = A - t%, for some A and a < 0; see, e.g.,
[22,23]; and

e the exponential annealing schedule y(t) = A - exp(a - t) for some A and a < 0; see,
e.g., [7,23].

In this section, we provide a theoretical proof that these schedules are indeed optimal.

7.3. Physical meaning of annealing

The general idea of using simulating physical phenomena in optimization is that
a physical systems tends to end up in a state with the smallest possible energy. For
example, in a gravitational field, this means getting to as low a position as possible. In
principle, we can place a ball on top of the mountain — which will constitute a local
minimum of energy. However, if a strong wind blows and disturbs the ball, it will start
falling down. It may reach a few local minima along the way, but eventually it will reach
the lowest possible position at the foot of the mountain.

So, a natural way to use simulated physical phenomena for optimization is to
simulate a system for which, for all the values of the parameters, its energy is equal to
the value of minimized objective function. In general, in Schroedinger equations, energy
is represented by the operator H, so for quantum annealing, this operator must represent
the desired objective function.

7.4. Need to select a family of schedules

The original optimization problem is usually not formulated in terms of energy. So,
how we transform it into energy depends in our choice of units. We will get completely
different results if we use a typical macro-world unit like Joule or a typical micro-world
unit like MeV. If we select a different unit, this means that in original unit, instead of H,
we will have C - H, where C is the ratio of the units.
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If for the original operator H the best schedule was y(t), then for the new operator
C - H, the best schedule is C - 7y(t), since the corresponding equation

i3 = oy Coy(t) - Hoy (32)
is equivalent to the original equation (31) if we re-scale the time, i.e., consider ¢/ C instead
of the original time .

Since, as we have mentioned, the choice of the energy unit is rather arbitrary, this
means that we cannot select a single annealing schedule y(t): with each such optimal
schedule, in different energy units, a schedule C - y(t) is optimal. Thus, we can only
select a family {C - y(t) }c~o of annealing functions, in which a function y(t) is fixed, and
the parameter C can take any positive value.

7.5. Need for re-scaling time and the resulting invariances (symmetries)

We are looking for the dependence of () on time, but the numerical value of time
also depends on the choice if the measuring unit. If we replace the original unit of time
by a A times smaller unit, then, for each moment of time, the original numerical value ¢
is replaced by a new value A - t. For example, if we replace minutes by seconds, then 2
minutes becomes 60 - 2 = 120 seconds.

It is reasonable to requires that the relative quality of a family not change if we
simply change the unit for time: e.g., if

{C- ) }cs0 <A{C-72(t) >0,

then we should have

{C- 1A cso <{C-72(A-t)}cso0-

The numerical value of time also depends on the choice of the starting point. If
we replace the original starting point with the one which is ¢y units earlier, then all
numerical values t are replaced with shifted values ¢ + tg. It also makes sense to require
that the relative quality of two families not depend on the choice of the starting point,
i.e., thatif

{C- 1) }cs0 <A{C-72(f) feso,

then we should have

{C 1t +to)fcs0 < {C-72(t+to) }c>o-

7.6. Resulting proof

According to our Lemma, once we assumed that the optimality criterion is invariant,
then the optimal family must be invariant.
For invariance with respect to changing the unit of time, this means that

{C-v(A-)}es0 = {C-v(H) }co-

This inequality means, in particular, that the function (A - f) from the first family
belongs to the second family, i.e., that for every t and A, we have y(A - t) = C(A) - y(¢)
for some C depending on A. It is known (see, e.g., [1]) that the only monotonic solutions
to this functional equation are power laws y(t) = A - t*.

Similarly, for invariance with respect to a starting point, invariance means that
{C-y(t+ty)}cso = {C-v(t) }c>o. This inequality means, for every t and ty, we have
y(t+t9) = C(to) - y(t) for some C depending on ty. It is known (see, e.g., [1]) that
the only monotonic solutions to this functional equation are exponential laws y(t) =
A-exp(a-t).
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a66 Thus, the power law and the exponential law are indeed the only invariant functions
sz —and thus, the optimal law must be either a power law or an exponential law.
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