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Abstract: Many quantum algorithms have been proposed which are drastically more efficient that1

the best of the non-quantum algorithms for solving the same problems. A natural question is: are2

these quantum algorithms already optimal – in some reasonable sense – or they can be further3

improved? In this paper, we review recent results showing that many known quantum algorithms4

are actually optimal. Several of these results are based on appropriate invariances (symmetries).5

Keywords: quantum computing; optimal algorithms; invariance; symmetry6

1. Formulation of the Problem7

1.1. Need for quantum computing8

Modern computers are extremely fast, but still there are many practical problem9

that require even faster computations. For example, high-performance computers, after10

computing for several hours, help us come up with a reasonably accurate prediction of11

tomorrow’s weather. It turns out that similar algorithms can help us predict where a12

tornado will turn in the next 15 minutes – but this computation also requires several13

hours on modern computers, too late for this prediction to be practically useful.14

How can we make computer faster? There are many interesting engineering ideas15

how to do it, but there is also a fundamental limitation – that, according to relativity16

theory, nothing can travel faster than the speed of light c = 300000 km/sec; see, e.g., [9,17

33]. For a usual laptop which is about 30 cm in size this means that it takes 10−9 seconds18

– 1 nanosecond – for a signal to go from one side of the laptop to the other. During this19

time, a usual 4 GHz laptop already performs 4 operations. From this viewpoint, the only20

way to make computer substantially faster is to make them significantly smaller.21

Already in modern computers, each memory cell is very small – up to 10 nanometers22

(nm), comparable with the nm size of a single molecule. As a result, each cell contains23

several thousand molecules. If we make cells even smaller, their size will be comparable24

with the size of a single molecule. At such sizes, we can no longer use Newtonian25

mechanics, we need to take into account that the micro-world is governed by different26

equations – the equations of quantum physics [9,33]. Computing on such a level is27

known as quantum computing28

1.2. Need for quantum algorithms29

One of the important challenges of quantum computing is that in quantum physics –30

in contrast to Newtonian physics – the results are non-deterministic: we can only predict31

the probabilities of different outcomes. The classical example of such a probabilistic32

uncertainty is radioactivity, one of the first observed quantum phenomena: we can33

predict the probability that an atom will decay – and thus, accurately predict the amount34

of radiation – but we cannot predict at which moment of time each individual atom will35

decay.36

Because of this probabilistic uncertainty, we cannot simply use the usual algorithms37

on the micro-level: we will then, in general, get different results with different probabili-38
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ties, while in computations, we usually want to come up with a single result. Thus, we39

need to develop new algorithms.40

1.3. Quantum algorithms: successes41

Quantum algorithms have indeed been successfully developed for solving all funda-42

mental aspects of computation needs; see, e.g., [26,35]. Not only the resulting algorithms43

produce deterministic (or almost deterministic) results, many of them compute these44

results even faster than the best non-quantum algorithms for solving the same problems.45

To briefly describe these successes, let us recall what are the fundamental computa-46

tion needs. To enumerate these needs, let us recall what we humans want.47

• We want to understand how the world works, to predict what will happen – this is,48

crudely speaking, what science is about. For example, we want to predict where49

the tornado will turn.50

• We also want to understand how can we improve the situation – this is, crudely51

speaking, what engineering is about. For example, how can we make tornadoes52

change their course? How can we make houses less vulnerable to tornadoes?53

• Finally, we want to communicate – or not – with others, so we need to develop54

techniques for communication only with the intended folks.55

Quantum algorithms are useful in solving all these main problems of science and engi-56

neering:57

• In the general prediction problem, we need to find a model that fits all the ob-58

servations. In a usual engineering problem, we need to find a design and/or a59

control that satisfies a given specification. In most of these problems, once we have60

a model, a design, or a control, it is computationally feasible to check whether this61

model, design, etc. satisfies the given specifications, it is searching for a satisfactory62

model, design, etc. which is computationally intensive. There exists a quantum63

algorithm that speeds us such a search. This algorithm – proposed by Lev Grover –64

finds an element in an unsorted list in time
√

n, which is much faster than n steps65

needed in the non-quantum case [16,17,26,35]. Quantum algorithms are also useful66

in optimization.67

• An additional way to speed up computations comes from the fact that in prediction68

problems – such as predicting tomorrow’s weather – to be on the safe side, we take69

into account today’s meteorological data in all nearby locations, even though most70

of this data is actually irrelevant. To speed up computations, it is desirable to decide71

which inputs and relevant and which are not. In this analysis, quantum computing72

also help – namely, we can use Deutsch-Jozsa algorithm; see, e.g., [26,35].73

• Finally, special algorithms have been developed for quantum communications –74

which is especially important since it is known that by using quantum computing,75

we can break the RSA encryption (and similar encryptions) – and these encryptions76

are behind most of the current computer security techniques [26,29,30,35].77

1.4. Quantum algorithm: remaining challenges and what we cover in this paper78

As we have mentioned, the existing quantum algorithms work very well. However,79

a next natural question is: are these algorithms optimal – in some reasonable sense –80

or we can do better? In this paper, we overview several results that show that many81

quantum algorithms are indeed optimal. These proofs are based on the invariance82

(symmetry) techniques.83

Of course, these results are just the beginning of the study. Quantum computing84

is a developing field, many new algorithm are being developed all the time, and, as85

quantum computers will become practical, this will definitely further boost the invention86

of new algorithms. We hope that the results reviewed in this paper will help researchers87

to analyze the optimality of other quantum algorithms as well.88
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1.5. Structure of this paper89

We start, in Section 2, with a brief reminder of the quantum basics – basics which90

are needed to understand the main ideas behind the existing quantum algorithms and91

behind the proofs of their optimality. In Section 3, we describe the relation between92

optimality – that we want to prove – and symmetries – i.e., invariance with respect93

to different transformations. After that, we present the proofs of optimality of differ-94

ent quantum algorithms for quantum data processing: Grover’s algorithm in Section95

4, parallel-related teleportation algorithm in Section 5, and an optimization-related96

quantum annealing algorithm in Section 6.97

It should be mentioned that other quantum algorithms are also known to be optimal:98

optimality of Deutsch-Josza algorithm is proven in [20] Deutsch-Josza, and optimality of99

quantum communication algorithm in [15].100

2. Quantum basics101

2.1. Quantum states102

In “classical” (= non-quantum) physics, each object, each system can be in different
states s, s′, . . . In quantum physics, such classical state are denoted by |s〉, |s′〉, etc. An
unusual feature of quantum physics is that, in addition to such states, we can also have
superpositions of such states, i.e., states of the type

c · |s〉+ c′ · |s′〉+ . . . , (1)

where c, c′, . . . are complex numbers for which

|c|2 + |c′|2 + . . . = 1, (2)

where, as usual, for a complex number c = a + b · i, its modulus |c| is defined as103

|c| =
√

a2 + b2. If the system is in the state (1), and we use a classical measurement104

instrument to measure the state, then:105

• we will get state s with probability |c|2,106

• we will get state s′ with probability |c′|2, etc.107

These probabilities should add up to 1, which explains the formula (2).108

In particular, a quantum analogue of a bit (binary digit) – i.e., of a system that can
be in two different states 0 and 1 – is a quantum but (qubit, for short) that can be in any
state

c0 · |0〉+ c1 · |1〉, (3)

where c0 and c1 are complex numbers for which

|c0|2 + |c1|2 = 1. (4)

In the state (3), the probability that we will observe 0 is |c0|2, and the probability that we109

will observe 1 is equal to |c1|2.110

Similarly, for a 2-bit system – which in classical physics, can be in 4 different states
00, 01, 10, and 11 – a general quantum state is equal to

c00 · |00〉+ c01 · |01〉+ c10 · |10〉+ c11 · |11〉. (5)

In principle, we can have general complex numbers. Interestingly, in most quantum111

algorithms, only real-valued coefficients c, c′, . . . are used. An explanation of this is112

provided, e.g., in [2].113
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2.2. Quantum measurements114

In general, if we have n classical states s1, . . . , sn, and we want to detect, in a115

quantum state ∑ αi · si, which of these states we are in, we get each si with probability116

|αi|2 – and once the measurement process detects the state si, the actual state turns into si.117

Instead of the classical states s1, . . ., we can use any other sequence of states s′i =118

∑
j

tij · sj, as long as they are orthonormal (= orthogonal and normal) in the sense that:119

• for each i, we have ‖s′i‖2 = 1, where ‖s′i‖2 def
= ∑

j
|tij|2 (normal), and120

• for each i and i′, we have s′i ⊥ s′i′ , i.e., 〈s′i|s′i′〉 = 0, where 〈s′i|s′i′〉
def
= ∑

j
tij · t∗i′ j121

(orthogonal).122

In this case, if we have a state ∑ α′i · s′i, then with probability |α′i|2, the measurement123

result is s′i and the state turns into s′i.124

In general, instead of a sequence of orthogonal vectors, we can have a sequence125

of orthogonal linear spaces L1, L2, . . . – where Li ⊥ Lj means that si ∈ Li and sj ∈ Lj126

implies si ⊥ sj. In this case, every state s can be represented as a sum s = ∑ si of the127

vectors si ∈ Li. As a result of the measurement, with probability ‖si‖2, we conclude that128

the state is in the space Li, and the original state turns into a new state si/‖si‖.129

2.3. Composite systems130

A 2-bit system is the simplest example of a composite system, when we consider two131

independent subsystems as a single system. In classical physics, if the first system is in132

one of the states s, s′, . . . , and the second system is in one of the states t, t′, . . . , then the133

set of all possible states of the composite system is the set of all the pairs (s, t) – which is134

also known as a Cartesian product S× T of the set S = {s, s′, . . .} of possible states of the135

first system and the set T = {t, t′, . . .} of possible states of the second system.136

In quantum physics, if the first system was in the general quantum state (1) and the
second system is in a similar quantum state

a · |t〉+ a′ · |t′〉+ . . . , (6)

then the state of the composite system – known as the tensor product of the states (1)
and (6):

(c · |s〉+ c′ · |s′〉+ . . .)⊗ (a · |t〉+ a′ · |t′〉+ . . .), (7)

is equal to

c · a · |s, t〉+ c · a′ · |s, t′〉+ . . . + c′ · a · |s′, t〉+ c′ · a′ · |s′, t′〉+ . . . (8)

In particular, for classical states, e.g., when c = a = 1 and c′ = . . . = a′ = . . . = 0, we get137

|s〉 ⊗ |t〉 = |s, t〉.138

Comment. It should be mentioned that the transformation of two states of subsystems139

into a single state of a composite system is linear in each of the values c, c′, . . . , and a, a′,140

. . . This linearity comes from the need to make sure that for the independent subsystems,141

the probability of observing (s, t) is equal to the product of the probabilities of observing142

s and t. This is true for the formula (8), when this equality follows from the fact that for143

every two complex numbers c and a, we have |c · a|2 = |c|2 · |a|2.144

2.4. How quantum states change145

States may change with time. In quantum physics, all changes are linear – for the
same reason why composition of two states is linear. In other words, each state

c1 · |s1〉+ . . . + cn · |sn〉 (9)
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is transformed into the state

c′1 · |s1〉+ . . . + c′n · |sn〉, (10)

for which

c′i =
n

∑
j=1

Tij · cj (11)

for some coefficient Tij. The matrix T = ‖Tij‖ is unitary: T†T = TT† = I, where I is the146

unit matrix, and T†
ij

def
= T∗ji , where c∗ denotes complex conjugate: (a + b · i)∗ def

= a− b · i.147

Note that every such transformation is reversible: once we apply the transformation148

T, we can then apply the transformation T† and, due to the property T†T = I, get back149

the original state.150

For 1-qubit systems, one of such transformation is Hadamard transformation H for
which

H(|0〉) = |0′〉 def
=

1√
2
· |0〉+ 1√

2
· |1〉; H(|1〉) = |0′〉 def

=
1√
2
· |0〉 − 1√

2
· |1〉. (11)

2.5. How functions are represented in quantum algorithms151

In this section, we will deal only with functions y = f (x1, . . . , xn) of boolean (0-1)152

variables – since these are the basic functions implemented by different “gates”, of which153

computers are built. We cannot simple represent these functions as transforming n154

boolean values xi into a single boolean value y, since such transformation is, in general,155

irreversible. For example, for the “and”-function y = f (x1, x2) = x1 & x2, if we know156

that y = 0, we cannot uniquely reconstruct the original pair (x1, x2):157

• we could have (x1, x2) = (0, 0),158

• we could have (x1, x2) = (0, 1), or159

• we could have (x1, x2) = (1, 0).160

To make the corresponding transformation reversible, a function y = f (x1, . . . , xn)
is represented as

Tf (x1, . . . , xn, y) = (x1, . . . , xn, y⊕ f (x1, . . . , xn)), (12)

where a⊕ b is exclusive “or” – or, what is the same, addition modulo 2, an operation161

for which 0⊕ 0 = 1⊕ 1 = 0 and 0⊕ 1 = 1⊕ 0 = 1. One can check that thus defined162

transformation is reversible: namely, if we apply the transformation Tf twice, we get163

back the original state (x1, . . . , xn, y) – simply because a⊕ a = 0 for all a.164

Comment. While this is the prevailing representation of functions in quantum computing,165

it should be mentioned in some cases, a different representation is preferable; see,166

e.g., [11].167

3. Relation Between Optimality and Invariance (Symmetry)168

3.1. What is invariance (symmetry)169

In many cases, there are some natural transformations that does not change the170

system. This “not changing” is called invariance. For example, suppose that we have171

an unsorted list, and we are looking for an element with a ceratin property in this list.172

For convenience, we can denote one of the list’s elements by s1, another one by s2,173

etc., but in this problem, it does not matter which element is called s1, which s2, etc. –174

any permutation π : {1, . . . , n} → {1, . . . , n} would retain the problem. Thus, in this175

problems, permutations are invariances. In other problems, we will have other natural176

invariances.177

In physics, invariance is called symmetry – since it naturally generalizes geometric178

invariances (symmetries); see, e.g., [33? ].179



Version June 25, 2021 submitted to Symmetry 6 of 17

4. What does “optimal” mean180

Usually, when we talk about “optimal", we mean that on the set of all alternatives181

A, A′, . . . , there is an objective function describing the quality of different alternatives, and182

we are looking for the alternative A with the largest (or sometimes the smallest) value183

of this objective function. For example, when we select between different quantum –184

i.e., in general, probabilistic – algorithms for solving a given problem, we may want to185

maximize that probability f (A) that the algorithm A will lead to the desired solution.186

However, this is a somewhat simplified description of what we usually mean by187

optimality. Often, there are several alternatives A1, A2, etc., with the exact same largest188

value f (A1) = f (A2) = . . . of the objective function. In this case, we can use this189

non-uniqueness to optimize something else. For example, in the above case, we can190

minimize the average time needed for the algorithm to finish. This means, in effect, that191

the original optimality criterion is not final, we can modify it and come up with a new,192

more complex criterion according to which an alternative A is better than the alternative193

A′ – we will denote it by A < A′– if:194

• either f (A′) < f (A)195

• or we have f (A) = f (A′) and also g(A′) < g(A) for the additional objective196

function g(A).197

If this still leads to several equally optimal alternatives, we can use this non-uniqueness198

to optimize something else – until we get to the final optimality criterion, for which there199

is exactly one optimal alternative.200

To simplify the analysis, it is useful to ignore all these objective functions f (A),201

g(A), etc., and to only consider what really matters: for each pair (A, A′), according to202

this criterion:203

• when we have A′ better than A (A < A′),204

• when we have A better than A′ (A′ < A), and205

• when A and A′ are equally good; we will denote it by A ∼ A′.206

In precise terms, by an optimality criterion that the set A of all alternatives, we mean a207

pair of relations < and ∼ with the following natural properties:208

• if A < A′ and A′ < A′′, then A < A′′;209

• if A < A′ and A′ ∼ A′′, then A < A′′;210

• if A ∼ A′ and A′ < A′′, then A < A′′;211

• if A ∼ A′ and A′ ∼ A′′, then A ∼ A′′;212

• if A ∼ A′, then A′ ∼ A; and213

• if A < A′, then we cannot have A ∼ A′.214

This pair of relations is known as a pre-order: it is similar to order, with the main difference215

that we can have A ∼ A′ without having A = A′.216

An alternative Aopt is called optimal if for every other alternative A, we have217

A < Aopt or A ∼ Aopt. An optimality criterion is called final if there is exactly one218

alternative which is optimal with respect to this criterion.219

4.1. For invariant criteria, optimal alternative is also invariant220

In many cases, there exists a reversible transformation T : A → A – e.g., permuta-221

tion – which does not change the situation. In this case, it makes sense to require that222

this transformation will not change which alternative is better. In precise terms, we say223

that an optimality criterion is T-invariant if the following conditions are satisfied:224

• if A < A′, then T(A) < T(A′);225

• if A ∼ A′ then T(A) ∼ T(A′).226

Many results from this paper used the following lemma (see, e.g., [25]):227

Lemma. For every final T-invariant optimality criterion, its optimal alternative Aopt is also228

T-invariant, i.e., T(Aopt) = Aopt.229
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Proof. The fact that Aopt means that for every A ∈ A, we have either A < Aopt230

or A ∼ Aopt. In particular, this is true for T−1(A), i.e., either T−1(A) < Aopt or231

T−1(A) ∼ Aopt. Due to T-invariance, we can conclude that either A < T(Aopt) or232

A ∼ T(Aopt). This is true for every alternative A, which means that the alternative233

T(Aopt) is also optimal. However, the optimality criterion is final, which means that234

there is only one optimal criterion. Thus, indeed, T(Aopt) = Aopt. The lemma is proven.235

236

Due to this lemma, if the optimality criterion is T-invariant, then to find optimal237

alternative, it is sufficient to find T-invariant alternatives. Let us start checking optimality238

with Grover’s algorithm.239

5. Grover’s Algorithm Is Optimal240

5.1. Formulation of the problem241

We are solving the following problem. We have a list of elements e1, . . . , en. We have242

an algorithm f (i) that, given an element ei – i.e., in effect, the index i – checks whether243

this element has the desired property. We want to find an element that has this property.244

For simplicity, we will consider the case when there is exactly one such element i0.245

Let us describe this problem is quantum computing-related terms. What we want
is an index i0 of the desired element. In quantum computing terms, this means that we
want to end up in a state |i0〉. As we have mentioned, in general, quantum processes are
probabilistic, so instead of the exact state |i0〉, we may end up in a superposition state:

c1 · |1〉+ . . . + ci0−1 · |i0 − 1〉+ ci0 · |i0〉+ ci0+1 · |i0 + 1〉+ . . . + cn · |n〉. (13)

In quantum terms, the algorithm that checks whether a given element has the246

desired property has the form Tf (|i, y〉) = |i, y⊕ f (x)〉, i.e.:247

• for i 6= i0, we have Tf (|i, 0〉) = |i, 0〉 and Tf (|i, 1〉) = |i, 1〉, while248

• for i = i0, we have Tf (|i0, 0〉) = |i0, 1〉 and Tf (|i0, 1〉) = |i0, 0〉.249

In terms of the Hadamard states |0′〉 and |1′〉, we get the following:250

• for |0′〉, for all i, we have Tf (|i〉 ⊗ |0′〉) = |i〉 ⊗ |0′〉;251

• for |1′〉, for all i 6= i0, we have Tf (|i〉 ⊗ |1′〉) = |i〉 ⊗ |1′〉, while for i = i0, we have252

Tf (|i0〉 ⊗ |1′〉) = −|i0〉 ⊗ |1′〉.253

So, for |0′〉, nothing changes, and for |1′〉, the additional bit |1′〉 remains the same, but
the previous state (13) changes to:

c1 · |1〉+ . . . + ci0−1 · |i0 − 1〉 − ci0 · |i0〉+ ci0+1 · |i0 + 1〉+ . . . + cn · |n〉. (14)

Let us denote this transformation from (13) to (14) by U.254

Our goal is to start with some state, and, by applying this transformation U and255

some other transformation(s) S, eventually come up with the desired element i0.256

5.2. Invariance (symmetry): reminder257

As we have mentioned earlier, in this problem, the natural invariances (symmetries)258

are invariances with respect to all possible permutations π : {1, . . . , n} → {1, . . . , n}. It259

is therefore reasonable to require that our optimality criterion is invariant with respect260

to all permutations. Due to the above Lemma, this implies that the optimal algorithm261

should also be permutation-invariant, in particular:262

• that the initial state should be permutation-invariant, and263

• that all transformations S should be permutation-invariant.264
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5.3. Towards the optimal algorithm: which transformations are permutation-invariant?265

The fact that the initial state is permutation-invariant means that ci = ci′ for all i and
i′ – since every two indices i and i′ can be obtained from each other by an appropriate
permutation. Thus, the initial state must have the form

c1 · |1〉+ . . . + c1 · |n〉, (14)

for some c1. Due to the normalization requirement (2), we have |c1| = 1/
√

n. In quantum
mechanics, states differing by a constant are considered the same state, so we can simply
take c1 = 1/

√
n. Then the initial state takes the form:

1√
n
· |1〉+ . . . +

1√
n
· |n〉. (15)

This is exactly the initial state of Grover’s algorithm.266

A general transformation is describes by a matrix Sij. For this matrix, permutation
invariance means that all the elements Sii are equal to each other – similar argument as
before. Let us denote this common value by a. Similarly, all the elements Sij with i 6= j
should also be equal to each other. Let us denote this common value by b. In these terms,
the corresponding linear transformation transforms the vector ci into a new vector

c′i = a · ci + b ·∑
j 6=i

cj. (16)

This expression can be equivalently described as

c′i = (a− b) · ci + b · C, where C def
=

n

∑
j=1

cj. (17)

We want to make sure that this transformation preserved the fact that the probabilities
add up to 1, i.e., that

n

∑
j=1
|c′j|2 = 1. (18)

As we have mentioned earlier, it is sufficient to consider situations in which all the
coefficients c′i are real numbers. In this case, |c′j|2 = (c′j)

2, and, due to (17), the condition
(18) takes the form

(a− b)2 ·
(

n

∑
i=1

c2
i

)
+ 2 · (a− b) · b · C2 + n · b2 · C2 = 1, (19)

i.e., due to the fact that
n
∑

i=1
c2

i = 1, that

(a− b)2 + (2 · (a− b) · b + n · b2) · C2 = 1. (20)

This equality has to hold for all C, so we must have

2 · (a− b) · b + n · b2 = (2 · (a− b) + n · b) · b = 0. (21)

If b = 0, then a = ±1, so the transformation S either leaves the state unchanged or
multiplies all the coefficient ci by−1 – i.e., in effect, also leaves the state unchanged. So, to
get a non-trivial transformation, we need to take b 6= 0. In this case, 2 · (a− b) + n · b = 0;
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since, without losing generality, we can take a − b = 1, we get b = −2/n. Thus,
a = (a− b) + b = 1− 2/n, and this transformation takes the form

c′i =
(

1− 2
n

)
· ci −

2
n
·∑

j 6=i
cj. (21)

This is also exactly the transformation used in Grover’s algorithm!267

In what order shall we apply the algorithms U and S? If we apply U twice or S268

twice, we get back the same state. Thus, it makes sense to apply these two algorithms269

interchangingly. The first application should be of U, since if we apply S to the initial270

state, we get the same state multiplied by a constant. Thus, we arrive at the following271

algorithm:272

• we start with the initial state (15);273

• then, we apply the transformation U;274

• after that, we apply the transformation S;275

• then, again we apply U; etc.276

This is exactly Grover’s algorithm. Thus, the Grover’s algorithm is the only permutation-277

invariant one. And since the optimal algorithm must be permutation-invariant, we278

therefore conclude that Grover’s algorithm is optimal.279

6. Parallelization: Teleportation Algorithm Is Optimal280

6.1. Need for parallelization281

From the theoretical viewpoint, the fact that, e.g., Grover’s algorithm is optimal is282

interesting. However, from the practical viewpoint, the fact that we cannot improve this283

algorithm constitutes a limitation on how fast we can compute – even if we use quantum284

computing. In problems in which the Grover’s speed up is not sufficient, we need to use285

other ideas to achieve a further speedup.286

To further speed up computations, a natural idea is to have several quantum287

computers working in parallel, so that each of them solves a part of the problem. This288

idea is similar to how we humans solve complex problems: if a task is too difficult for289

one person to solve – be it building a big house or proving a complex theorem – several290

people team up and together solve the task.291

6.2. Need for teleportation292

To successfully collaborate, quantum computers need to exchange intermediate293

states of their computations. Here lies a problem: for complex problems, we would294

like to use computers located in different geographic areas, but a quantum state gets295

changed when it is sent far away.296

Researchers have come up with a way to avoid this sending, called teleportation.297

There exists a scheme for teleportation [3,26,27].298

6.3. What we do in this section299

A priori, it is not clear how good is the current teleportation scheme: maybe there300

are other schemes which are faster (or better in some other sense)? In this section, we301

show that the existing teleportation scheme is, in some reasonable sense, unique – and,302

in this sense, is the best. This result first appeared in [12].303

6.4. Standard quantum teleportation algorithm: reminder304

6.4.1. Need for communication305

At one location, we have a particle in a certain state; we want to send this state to306

some other location.307

Usually, the sender is denoted by A and the receiver by B. In communications, it is308

common to call the sender Alice, and to call the receiver Bob. States corresponding to309
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Alice are usually described by using a subscript A, and states corresponding to Bob are310

usually described by using a subscript B.311

6.4.2. Communication is straightforward in classical physics but a challenge in quantum312

physics313

In classical (pre-quantum) physics, the communication problem has a straightfor-314

ward solution: if we want to communicate a state, we measure all possible characteristics315

of this state, send these values to Bob, and let Bob reproduce the object with these316

characteristics. This is how, e.g., 3D printing works. This solution is based on the fact317

that in classical (non-quantum) physics we can, in principle, measure all characteristic of318

a system without changing it.319

The problem is that in quantum physics, such a straightforward approach is not320

possible: as we have mentioned, in quantum physics, every measurement changes the321

state – and moreover, irreversibly deletes some information about the state. For example,322

if we start with a state α0 · |0〉+ α1 · |1〉, all we get after the measurement is either 0 or323

1, with no way to reconstruct the values α0 and α1 that characterize the original state.324

Since we cannot use the usual straightforward approach for communicating a state, we325

need to use an indirect approach. This approach is known as teleportation.326

6.4.3. What we consider in this section327

In this section, we consider the simplest possible quantum state – namely, the328

quantum analogue of the simplest possible non-quantum state. In the non-quantum329

case, a system can be in several different states. The state passing problem makes sense330

only when the system can be in at least two different states – otherwise, if we know331

beforehand what state we want to send, there is no need to send any information, Bob can332

simply reproduce the known state. The simplest case when communication is needed is333

when the number of possible states is as small as possible but still larger than 1 – i.e., the334

case when the system can be in two different states. In the computer, such situation can335

be naturally described if we associate these two possible states with 0 and 1.336

In these terms, the problem is as follows:337

• Alice has a state
α0 · |0〉+ α1 · |1〉 (22)

that she wants to communicate to Bob – a person at a different location.338

• As a result of this process, Bob should have the same state.339

6.4.4. Notations340

Let us indicate states corresponding to Alice with a subscript A, and states corre-
sponding to Bob with a subscript B. The state (22) is not exclusively Alice’s and it is not
exclusively Bob’s, so to describe this state, we will use the next letter – letter C. In these
terms, Alice has a state

α0 · |0〉C + α1 · |1〉C (23)

that she wants to communicate to Bob.341

6.4.5. Preparing for teleportation: an entangled state342

To make teleportation possible, Alice and Bob prepare a special entangled state:

1√
2
· |0A1B〉+

1√
2
· |1A0B〉. (24)

This state is a superposition of two classical states:343

• the state 0A1B in which A is in state 0 and B is in state 1, and344

• the state 1A0B in which A is in state 1 and B is in state 0.345
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6.4.6. What is the joint state of A, B, and C at the beginning of the procedure346

In the beginning, the state C is independent of A and B. So, the joint state is a tensor
product of the AB-state (24) and the C-state (23):

α0√
2
· |0A1B0C〉+

α1√
2
· |0A1B1C〉+

α0√
2
· |1A0B0C〉+

α1√
2
· |1A0B1C〉. (25)

6.4.7. First stage: measurement347

In the first stage of the standard teleportation algorithm, Alice performs a measure-
ment procedure on the parts A and C which are available to her. In general, to describe
the possible results of measuring a state s with respect to linear spaces Li, we need to
represent s as the sum

s = ∑ si, (26)

with si ∈ Li.348

In the standard teleportation algorithm, we perform the measurement with respect
to the following four linear spaces Li = LB ⊗ ti, where LB is the set of all possible linear
combinations of |0〉B and |1〉B, and the states ti have the following form:

t1 =
1√
2
· |0A0C〉+

1√
2
· |1A1C〉; t2 =

1√
2
· |0A0C〉 −

1√
2
· |1A1C〉;

t3 =
1√
2
· |0A1C〉+

1√
2
· |1A0C〉; t4 =

1√
2
· |0A1C〉 −

1√
2
· |1A0C〉. (27)

One can easily check that the states ti are orthonormal, hence the spaces Li are orthogonal.349

To describe the result of measuring the state (25) with respect to these linear spaces,
we must first represent the state (25) in the form s = ∑ si, with si ∈ Li. For this purpose,
we can use the fact that, due to the formulas (27), we have

|0A0C〉 =
1√
2
· t1 +

1√
2
· t2; |1A1C〉 =

1√
2
· t1 −

1√
2
· t2;

|0A1C〉 =
1√
2
· t3 +

1√
2
· t4; |1A0C〉 =

1√
2
· t3 −

1√
2
· t4. (28)

Substituting the expressions (28) into the formula (25), we get

α0√
2
· |1〉B ⊗

(
1√
2
· t1 +

1√
2
· t2

)
+

α1√
2
· |1〉B ⊗

(
1√
2
· t3 +

1√
2
· t4

)
+

α0√
2
· |0〉B ⊗

(
1√
2
· t3 −

1√
2
· t4

)
+

α1√
2
· |0〉B ⊗

(
1√
2
· t1 −

1√
2
· t2

)
,

thus (α0

2
|1B〉+

α1

2
|0B〉

)
⊗ t1 +

(α0

2
|1B〉 −

α1

2
|0B〉

)
⊗ t2+(α1

2
|1B〉+

α0

2
|0B〉

)
⊗ t3 +

(α1

2
|1B〉 −

α0

2
|0B〉

)
⊗ t4.

So, we get a representation of the type (26), with

s1 =
(α0

2
· |1B〉+

α1

2
|0B〉

)
⊗ t1, s2 =

(α0

2
· |1B〉 −

α1

2
· |0B〉

)
⊗ t2,

s3 =
(α1

2
· |1B〉+

α0

2
· |0B〉

)
⊗ t3, s4 =

(α1

2
· |1B〉 −

α0

2
· |0B〉

)
⊗ t4.

Here, for each i, we have

‖si‖2 =
∣∣∣α0

2

∣∣∣2 + ∣∣∣α1

2

∣∣∣2 =
1
4
· (|α0|2 + |α1|2) =

1
4

,
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thus ‖si‖ =
1
2

.350

So, with equal probability of
1
4

, we get one of the following four states – and Alice
knows which one it is:

(α0 · |1B〉+ α1 · |0B〉)⊗ t1; (α0 · |1B〉 − α1 · |0B〉)⊗ t2;

(α1 · |1B〉+ α0 · |0B〉)⊗ t3; (α1 · |1B〉 − α0 · |0B〉)⊗ t4. (29)

6.4.8. Second stage: communication351

On the second stage, Alice sends to Bob the measurement result. As a result, Bob352

knows in which the four states (29) the system is.353

6.4.9. Final stage: Bob “rotates” his state and thus, get the original state teleported to him354

On the final stage, Bob performs an appropriate transformation of his state B.355

• In the first case, he uses a unitary transformation that swaps |0〉B and |1〉B, for which356

t01 = t10 = 1 and t00 = t11 = 0.357

• In the second case, he uses a unitary transformation for which t01 = 1, t10 = −1358

and t00 = t11 = 0.359

• In the third case, he already has the desired state.360

• In the fourth case, he uses a unitary transformation for which t00 = −1, t11 = 1,361

and t01 = t10 = 0.362

As a result, in all fours cases, he gets the original state α0 · |0〉B + α1 · |1〉B.363

6.5. The main result of this section: the standard quantum teleportation algorithm is, in some364

reasonable sense, unique365

6.5.1. Formulation of the problem366

Teleportation is possible because we have prepared an entangled state (24), i.e., a
state sAB in which the states of Alice and Bob are not independent, i.e., a state that does
not have a form sA ⊗ sB. However, (24) is not the only possible entangled state. Let us
consider, instead, a general joint state of two qubits:

a00 · |0A0B〉+ a01 · |0A1B〉+ a10 · |1A0B〉+ a11 · |1A1B〉. (3a)

What will happen if we use this more general entangled state instead of the one that is367

used in the known teleportation algorithm?368

6.5.2. Analysis of the problem369

For the state (24a), the joint state of all three subsystems has the form

α0 · a00 · |0A0B0C〉+ α1 · a00 · |0A0B1C〉+

α0 · a01 · |0A1B0C〉+ α1 · a01 · |0A1B1C〉+

α0 · a10 · |1A0B0C〉+ α1 · a10 · |1A0B1C〉+ (25a)

α0 · a11 · |1A1B0C〉+ α1 · a11 · |1A1B1C〉.

Substituting expressions (28) into this formula, we get

α0√
2
· a00 · |0〉B ⊗ (t1 + t2) +

α1√
2
· a00 · |0〉B ⊗ (t3 + t4)+

α0√
2
· a01 · |1〉B ⊗ (t1 + t2) +

α1√
2
· a01 · |1〉B ⊗ (t3 + t4)+

α0√
2
· a10 · |0〉B ⊗ (t3 − t4) +

α1√
2
· a10 · |0〉B ⊗ (t1 − t2)+
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α0√
2
· a11 · |1〉B ⊗ (t3 − t4) +

α1√
2
· a11 · |1〉B ⊗ (t1 − t2),

thus s = S1 ⊗ t1 + S2 ⊗ t2 + . . ., where

S1 =

(
α0 · a00√

2
+

α1 · a10√
2

)
· |0〉B +

(
α0 · a01√

2
+

α1 · a11√
2

)
· |1〉B,

and S2, . . . are described by similar expressions.370

This means that after the measurement, Bob will have the normalized state S1/‖S1‖.371

To perform teleportation, we need to transform this state into the original state α0 ·372

|0〉B + α1 · |1〉B. Thus, the transformation from the resulting state S1/‖S1‖ to the original373

state must be unitary. It is known that the inverse transformation to a unitary one is374

also unitary. In general, a unitary transformation transforms orthonormal states into375

orthonormal ones.376

So, the inverse transformation that:377

• maps the state |0〉B (corresponding to α0 = 1 and α1 = 0) into a new state |1′〉B
def
=378

const · (a00 · |0〉B + a01 · |1〉B), and379

• maps the state |1〉B (corresponding to α0 = 0 and α1 = 1) into a new state |0′〉B
def
=380

const · (a10 · |0〉B + a11 · |1〉B),381

transforms two original orthonormal vectors |0〉B and |1〉B into two new orthonormal382

ones |0′〉B and |1′〉B.383

In terms of these new states, the entangled state (24a) takes the form

const · (|0〉A ⊗ |1′〉B + |1〉B ⊗ |0′〉B).

From the requirement that the sum of the squares of absolute values of all the coefficients

add up to 1, we conclude that 2 · const2 = 1. Then const =
1√
2

and the entangled state

takes the familiar form

1√
2
· (|0〉A ⊗ |1′〉B + |1〉B ⊗ |0′〉B). (24)

This is exactly the entangled state used in the standard teleportation algorithm. So, we384

can make the following conclusion.385

6.5.3. Conclusion of this section386

From the technical viewpoint, the only entangled state that leads to a successful387

teleportation is the state (24) corresponding to the standard quantum teleportation388

algorithm – for some orthornomal states |0′〉B and |1′〉B.389

Thus, we have shown that, indeed, the existing quantum teleportation algorithm is390

unique – so we should not waste our time and effort looking for more efficient alternative391

quantum teleportation algorithms.392

7. Optimization: Quantum Annealing Schedules Are Optimal393

7.1. Quantum annealing: ideas, successes, and challenges394

One of the important practical problems is optimization. An important challenge395

is that often, the existing optimization techniques lead to a local optimum. One way to396

avoid local optima is annealing: whenever we find ourselves in a possibly local optimum,397

we jump out with some probability and continue search for the true optimum. Since398

quantum processes are probabilistic, a natural way to organize such a probabilistic399

perturbation of the deterministic optimization is to use quantum effects, i.e., to perform400

quantum annealing. This idea was first proposed in [10,19] and has been used successfully401

since then.402
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It turns out that often, quantum annealing works much better than non-quantum403

one; see, e.g., see, e.g., [4–6,8,18,21,22,24,28,31,32,34]. Quantum annealing is the main404

technique behind the only commercially available computational devices that use quan-405

tum effects – D-Wave computers; see, e.g., [4,21,32].406

The efficiency of quantum annealing depends on the proper selection of the an-407

nealing schedule, i.e., schedule that describes how the perturbations decrease with time.408

Empirically, it has been found that two schedules work best: power law and exponential409

ones. In this section, following [14], we prove that these two schedules are indeed410

optimal (in some reasonable sense).411

7.2. Formulation of the problem412

In general, the state of a quantum system is described by a complex-valued function
ψ(t) (known as the wave function), and the dynamics of a quantum system is described
by Schroedinger’s equations

i · h̄ · ∂ψ

∂t
= Hψ, (30)

where, as before, i def
=
√
−1 and H is a corresponding linear operator. In these terms,

annealing-type modification means adding additional terms – decreasing with time – to
the operator H, i.e., replacing the original equation (30) with the modified equation

i · h̄ · ∂ψ

∂t
= Hψ + γ(t) · H0ψ, (31)

where H0 describes the deviation, and γ(t) monotonically tends to 0 as t increases.413

The efficiency of quantum annealing strongly depends on the proper selection of414

the annealing schedule, i.e., the dependence of γ(t) on time t. Empirically, depending415

on the specific optimization problem, two scheduled work the best:416

• the power law annealing schedule γ(t) = A · ta, for some A and a < 0; see, e.g.,417

[22,23]; and418

• the exponential annealing schedule γ(t) = A · exp(a · t) for some A and a < 0; see,419

e.g., [7,23].420

In this section, we provide a theoretical proof that these schedules are indeed optimal.421

7.3. Physical meaning of annealing422

The general idea of using simulating physical phenomena in optimization is that423

a physical systems tends to end up in a state with the smallest possible energy. For424

example, in a gravitational field, this means getting to as low a position as possible. In425

principle, we can place a ball on top of the mountain – which will constitute a local426

minimum of energy. However, if a strong wind blows and disturbs the ball, it will start427

falling down. It may reach a few local minima along the way, but eventually it will reach428

the lowest possible position at the foot of the mountain.429

So, a natural way to use simulated physical phenomena for optimization is to430

simulate a system for which, for all the values of the parameters, its energy is equal to431

the value of minimized objective function. In general, in Schroedinger equations, energy432

is represented by the operator H, so for quantum annealing, this operator must represent433

the desired objective function.434

7.4. Need to select a family of schedules435

The original optimization problem is usually not formulated in terms of energy. So,436

how we transform it into energy depends in our choice of units. We will get completely437

different results if we use a typical macro-world unit like Joule or a typical micro-world438

unit like MeV. If we select a different unit, this means that in original unit, instead of H,439

we will have C · H, where C is the ratio of the units.440
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If for the original operator H the best schedule was γ(t), then for the new operator
C · H, the best schedule is C · γ(t), since the corresponding equation

i · h̄ · ∂ψ

∂t
= C · Hψ + C · γ(t) · H0ψ (32)

is equivalent to the original equation (31) if we re-scale the time, i.e., consider t/C instead441

of the original time t.442

Since, as we have mentioned, the choice of the energy unit is rather arbitrary, this443

means that we cannot select a single annealing schedule γ(t): with each such optimal444

schedule, in different energy units, a schedule C · γ(t) is optimal. Thus, we can only445

select a family {C · γ(t)}C>0 of annealing functions, in which a function γ(t) is fixed, and446

the parameter C can take any positive value.447

7.5. Need for re-scaling time and the resulting invariances (symmetries)448

We are looking for the dependence of γ(t) on time, but the numerical value of time449

also depends on the choice if the measuring unit. If we replace the original unit of time450

by a λ times smaller unit, then, for each moment of time, the original numerical value t451

is replaced by a new value λ · t. For example, if we replace minutes by seconds, then 2452

minutes becomes 60 · 2 = 120 seconds.453

It is reasonable to requires that the relative quality of a family not change if we
simply change the unit for time: e.g., if

{C · γ1(t)}C>0 < {C · γ2(t)}C>0,

then we should have

{C · γ1(λ · t)}C>0 < {C · γ2(λ · t)}C>0.

The numerical value of time also depends on the choice of the starting point. If
we replace the original starting point with the one which is t0 units earlier, then all
numerical values t are replaced with shifted values t + t0. It also makes sense to require
that the relative quality of two families not depend on the choice of the starting point,
i.e., that if

{C · γ1(t)}C>0 < {C · γ2(t)}C>0,

then we should have

{C · γ1(t + t0)}C>0 < {C · γ2(t + t0)}C>0.

7.6. Resulting proof454

According to our Lemma, once we assumed that the optimality criterion is invariant,455

then the optimal family must be invariant.456

For invariance with respect to changing the unit of time, this means that

{C · γ(λ · t)}C>0 = {C · γ(t)}C>0.

This inequality means, in particular, that the function γ(λ · t) from the first family457

belongs to the second family, i.e., that for every t and λ, we have γ(λ · t) = C(λ) · γ(t)458

for some C depending on λ. It is known (see, e.g., [1]) that the only monotonic solutions459

to this functional equation are power laws γ(t) = A · ta.460

Similarly, for invariance with respect to a starting point, invariance means that461

{C · γ(t + t0)}C>0 = {C · γ(t)}C>0. This inequality means, for every t and t0, we have462

γ(t + t0) = C(t0) · γ(t) for some C depending on t0. It is known (see, e.g., [1]) that463

the only monotonic solutions to this functional equation are exponential laws γ(t) =464

A · exp(a · t).465



Version June 25, 2021 submitted to Symmetry 16 of 17

Thus, the power law and the exponential law are indeed the only invariant functions466

– and thus, the optimal law must be either a power law or an exponential law.467
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