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Abstract

Fuzzy techniques depend heavily on eliciting meaningful membership
functions for the fuzzy sets used. Often such functions are obtained from
data. Just as often they are obtained from experts knowledgable of the
domain and the problem being addressed. However, there are cases when
neither is possible, for example because of insufficient data, or unavailable
experts. What functions should one choose and what should guide such
choice? This paper argues in favor of using Cauchy membership functions,
thus named because their expression is similar to that of the Cauchy
distributions. The paper provides a theoretical explanation for this choice.

keywords: fuzzy sets, membership functions, Cauchy membership function

1 Introduction

It is well known that the introduction of fuzzy sets [11] opened up new pos-
sibilities in modeling and reasoning under uncertainty and imprecision. The
introduction of the notion linguistic variable [12] has brought about additional
benefits allowing for quantitative computation and its interpretation in words,
and reasoning.

In many practical applications of fuzzy techniques (see, e.g., [1, 2, 3, 4, 5, 11]),
the membership functions can be obtained from the experts, in other, the fuzzy
sets are elicited directly from the data without the intervention of a human
expert, imposing some condition on the underlying summarization procedure
[10], [6]. However, an important question arises: what is to be done when
neither of these two approaches can be used? What functions should one then
use? Experiments (see, e.g., [8, 9]) show that in many applications, the following

1



membership functions work the best:

µx(x) =
1

1 +
(x− a)2

k2

. (1)

The expression (1) describing these membership functions is similar to the
known expression for the probability density function f(x) of a Cauchy dis-
tribution (see, e.g., [7]):

f(x) = const · 1

1 +
(x− a)2

k2

. (2)

Because of this similarity, membership functions (1) are known as Cauchy mem-
bership functions.

A natural question is: how can one explain this empirical fact – that Cauchy
membership functions work better than other functions tried? To answer such
a question one must define in a precise manner what it is really meant by ”work
better” and it is here suggested that this may be defined from two points of view
– efficiency and reliability. In the remainder of the paper the efficiency is con-
sidered, showing that along with Gaussian membership functions, the Cauchy
membership functions lead to efficient learning. To clarify, by efficient it is
meant an approach where, in the process of training a fuzzy model, straightfor-
ward one step computations are possible. The paper explores theoretically (in
an almost axiomatic-like manner, that is, by imposing desired properties on the
membership function) the basis for selection of a membership function in order
to achieve efficient learning.

2 Which Membership Functions Lead to the Most
Efficient Learning

2.1 Formulation of the Problem

From expert rules to fuzzy learning. One of the main reasons why Lotfi
Zadeh invented fuzzy techniques was to translate expert rules that use imprecise
(fuzzy) natural-language property like small, medium, etc., into a precise control
strategy. For this purpose, to each such property P , Zadeh proposed to assign a
function µP (x) (known as membership function) that describes, for each possible
value x of the corresponding quantity, the degree to which, according to the
expert, an object with this value satisfies the property P – e.g., to what extent
the amount x is small. This degree is usually assumed to be from the interval
[0, 1].

This is how first applications of fuzzy techniques emerged: researchers elicited
rules and membership functions from the experts, and used fuzzy methodology
to design a control strategy. The resulting control was often reasonably good,
but not perfect. So, a natural idea was proposed: to use the original fuzzy
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control as a first approximation, and then to tune its parameters based on the
practical behavior of the resulting system.

This fuzzy learning idea was first used in situations when we have expert
rules that provide a reasonable first approximation. However, it turned out
that this learning algorithm leads to a reasonable control even in the absence of
expert rules, i.e., based solely on data.

Natural question: which membership function should one use? When
starting with expert knowledge, membership functions are elicited from the
experts. But when using fuzzy learning to situations when there is no expert
knowledge, a natural question is: which membership functions should one use?

2.2 How to Select Membership Functions

Main idea

A natural idea is to select a membership function that would make learning
faster. How can one do that?

Need of differentiability

The main objective of any learning is to optimize the corresponding objective
function – a loss or cost function, which measures the discrepancy between the
desired and actual behavior of the system.

Since the invention of calculus, the most efficient optimization techniques are
based on computing the derivatives: one of the main objectives (and still one of
main uses) of calculus is to identify points where a function attains its maximum
or minimum among the roots of the first derivative. In machine learning, one
of the simplest approaches is to achieve this is based on gradient descent.

The result of processing by several fuzzy layers is a composition of functions
corresponding to each layer. So, to compute the derivative of the resulting
transformation, one needs to know the derivatives corresponding to each layer.
From this viewpoint, to find a membership function that will make learning
faster, one needs to find membership functions which are differentiable and
whose derivatives are easy to compute. Ideally, it should be possible to express
such derivatives in terms of the original function (as is the case, for example,
for the sigmoid and hyperbolic tangent functions often used in training neural
networks).

In more precise terms, the problem is as follows: when computing the deriva-
tive µ′(x) for some input x, it is desired to use the fact that µ(x) has already
been computed. Thus, in computing the value µ′(x), one can use not only the
input x, but also the value µ(x). In other words, one is looking for an expression
µ′(x) = f(µ(x), x) for the simplest possible function f(a, x) of two variables.
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The meanining of simplest

In a computer, the only hardware supported operations with numbers are arith-
metic operations: addition, subtraction (which, for the computer, is, in effect,
the same as addition), multiplication, and taking an inverse (division is imple-
mented as a/b = a · (1/b)). To be more precise, computing an inverse is also
implemented as a sequence of additions, subtractions, and multiplications, so
each computation actually consists of additions, subtractions, and multiplica-
tions – and thus, computes a polynomial, since a polynomial can be defined
as any function that can be obtained from variables and constants by using
addition, subtraction, and multiplication. For example, to compute exp(x) or
sin(x), most compilers compute the value of a polynomial that approximates
the desired function – usually this polynomial is simply the sum of the first few
terms of this function’s Taylor expansion.

From this viewpoint, looking for the simplest function f(a, x) means looking
for a polynomial f(a, x) that can be obtained by using the smallest possible
number of arithmetic operations. (In a computer, unary minus is easy, so it
is not counted.) Moreover, it is customary in machine learning (e.g., in re-
gression problems) to look for the smallest degree polynomial to order to avoid
overfitting.

Required asymptotic behavior

A typical membership function corresponding to notions like small and medium
is only satisfied, with a reasonable degree, for a bounded set of values. That is,
the support of a membership function is bounded. Thus, in the limits, when
x→∞ or x→ −∞, one should have µ(x)→ 0. Thus, it makes sense to consider
membership functions with this asymptotic property.

More over, most membership functions do not just asymptotically tend to
0, they are equal to 0 outside some intervals. For such function, in the areas
where µ(x) = 0, we expect µ′(x) = 0, i.e., we have f(0, x) = 0 for all x. Since
the function f(a, x) is a polynomial, this means that all its monomials must
be proportional to a, i.e., one must have f(a, x) = a · g(a, x) for some function
g(a, x). Thus, looking for the simplest function f(a, x) means looking for the
simplest functions g(a, x). The cases when computing g(a, x) requires 0 or 1
arithmetic operation are considered next.

When computing g(a, x) requires no arithmetic operations

This means that the value g(a, x) is equal to one of the given values, i.e., either
to g(a, x) ∈ {a, x, c} for some constant c.

1. If g(a, x) = a, it follows that µ′(x) = f(µ(x), x) = µ(x) · g(µ(x), x) =

µ(x) · µ(x) = µ(x)2, i.e.,
dµ(x)

dx
= µ(x)2 hence

dµ(x)

µ(x)2
= dx. Integrating,

obtains − 1

µ(x)
= x + C, and hence µ(x) = − 1

x+ C
. This function is
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unbounded, so it cannot serve as a membership function. In this case,
adding unary minus, i.e., considering g(a, x) = −a, does not help.

2. If g(a, x) = x, it follows that µ(x)′ = µ(x) · x, i.e.,
dµ(x)

dx
= µ(x) · x

hence
dµ(x)

µ(x)
= x · dx. Integrating, obtains ln(µ(x)) =

x2

2
+ C, i.e.,

µ(x) = A exp

(
x2

2

)
for some constant A = exp(C). This is not a

membership function, but by adding unary negation, i.e., by consider-

ing g(a, x) = −x, yields µ(x) = exp

(
−x

2

2

)
– a very reasonable case of

Gaussian membership functions.

3. If g(a, x) = c, it follows that µ(x)′ = c · µ(x), i.e.,
dµ(x)

dx
= c · µ(x)

hence
dµ(x)

µ(x)
= c · dx. Integrating, obtains ln(µ(x)) = c · x + C, i.e.,

µ(x) = A exp (c · x) – also not membership functions.

When computing g(a, x) requires one arithmetic operation

This operation can be addition/substraction or multiplication.

1. For addition, one can have g(a, x) = a+a, g(a, x) = a+ c, g(a, x) = x+x,
g(a, x) = x+c, or g(a, x) = a+x. In the first case, leads to an unbounded
function. The second case, leads to a sigmoid function – that does not have
the right asymptotic behavior for x → ±∞. The third and fourth cases,
lead to the Gaussian functions – re-scaled in the third case and shifted
in the fourth case. Finally, the last case leads to a reasonable differential
equation µ(x)′ = µ(x) · (µ(x) + x), but the problem is that this equation
does not have an explicit solution. This means that while computing µ′(x)
using µ(x), computing µ(x) itself will be difficult – so this case should also
be dismissed.

2. For multiplication, the same five different cases are obtained as for ad-
dition, with the addition operator replaced by the multiplication opera-
tor: g(a, x) = a · c, g(a, x) = x · c, g(a, x) = a · a, g(a, x) = x · x, or
g(a, x) = a · x. The first case leads to an unbounded function, the sec-
ond to a re-scaled Gaussian function. The third g(a, x) = a · a, leads to
dµ

dx
= µ3 and hence to

dµ

µ3
= dx. Integrating, obtains − 1

2µ2(x)
= x + C,

i.e., µ(x) =
√
−2(x+ C). This expression is not defined for large posi-

tive x, so it should also be dismissed. The fourth case g(a, x) = x · x,

leads to
dµ(x)

dx
= µ(x) · x2 hence

dµ(x)

µ(x)
= x2 · dx. Integrating, obtains
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ln(µ(x)) =
1

3
· x3 + C, and hence µ(x) = exp

(
1

3
· x3 + C

)
, which is not

bounded, so it has to be dismissed.

Finally, the last case, g(a, x) = a · x, yields
dµ(x)

dx
= µ(x)2 · x hence

dµ(x)

µ2(x)
= x · dx. Integrating, obtains − 1

µ(x)
=

1

2
· x2 + C, hence µ(x) =

− 1
1

2
· x2 + C

. This is not a membership function, but adding unary minus,

i.e., by considering g(a, x) = −a ·x, leads to µ(x) =
1

1

2
· x2 + C

, i.e., what

we called a Cauchy membership function.

Resulting membership functions

A membership function µ is said to be normal if supx µ(x) = 1. Normal mem-
bership functions are preferred as they are considered to represent a well-defined
concept. It is easy to see that supx 1/(x2/2 + C) = 1/C, so if this were to be
a normal membership function, C must be equal to 1. Thus, the resulting
membership function is shown in equation (3).

µ(x) =
1

1 +
x2

2

. (3)

Taking into account that the numerical value of a physical quantity depends
on the choice of the measuring unit and on the choice of the starting point,
changing a measuring unit and/or a starting point, a new numerical values X
can be obtained from previous values x by a linear transformation X = k ·x+a,
where k is the ratio of the measuring units and a is the difference in starting
points. (A classical example is the relation between temperature tC in Celsius
and temperature tF in Fahrenheit: tF = 1.8 · tC + 32.)

When the original values x are described by the membership function (3),
then, the membership function for X is obtained by substituting in (3), the

expression x =
X − a
k

. This leads to the membership function show in in the

equation (4),

µX(X) =
1

1 +
(X − a)2

2k2

. (4)

or, by letting 2k2 = K2 to the Cauchy membership function shown in equa-
tion (5).

µCauchy(X) =
1

1 +
(X − a)2

K2

. (5)
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Similarly, substituting x =
X − a
k

into the expression µ(x) = exp

(
−x

2

2

)
,

obtains

µX(X) = exp

(
− (X − a)2

2k2

)
, (6)

or, in terms of the new parameter K:

µGaussian(X) = exp

(
− (X − a)2

K2

)
. (7)

It is easy to see that in each case the respective derivatives, µ′(x) can be

easily calculated in terms of µ(x) and the derivative of (X−a)2
K2 . Indeed, for the

Cauchy membership function, its derivative is as given in the equation (8), while
for the Gaussian function as shown in the equation (9).

µ′Cauchy(X) = −µ2
Cauchy(X)

2(X − a)

K2
(8)

µ′Gaussian(X) = −µGaussian(X)
2(X − a)

K2
(9)

Figure 1 for µCauchy and µGaussian, for the same choice of the parameters
a and K, shows that these functions are quite similar. On what basis should

Figure 1: The Cauchy and Gaussian membership functions for a = 10, K = 2.

one of these membership functions be preferred? Recall that selecting a differ-
entiable membership problem, and moreover a function whose derivative can
be computed in terms of the function itself, results in an efficient calculation
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of the gradient of the cost function associated to a learning task. Using fuzzy
sets presents the additional advantage of being able to use fuzzy logic in rea-
soning tasks. When using the standard fuzzy logic operators for conjunction
and disjunction (respectively min and max), Cauchy and Gaussian membership
functions produce the same result. However, for the standard negation operator
(µ(·) = 1−µ(·)), the results are different as it can be seen in the equations (10)
and (11) below.

µCauchy(x) = 1− µCauchy(x) = 1− 1

1+
(x−a)2

K2

=
1+

(x−a)2

K2 −1

1+
(x−a)2

K2

=
(x−a)2

K2

1+
(x−a)2

K2

= (x−a)2
K2+(x−a)2

(10)

µGaussian(x) = 1− µGaussian(x) = 1− e−
(x−a)2

K2 . (11)

This means that for the same tuple of parameters (a,K), the Cauchy mem-
bership function is slightly fuzzier than the Gaussian membership and therefore
better able to distinguish between data points represented by the fuzzy set,
than the Gaussian membership function. It is also expected that the use of the
Cauchy membership function in computing the gradient of the cost function is
more efficient.

2.2.1 Conclusions

This paper considered the problem of choosing a membership function from a
theoretical - axiomatic-like perspective - of efficiency of learning. It was found
that given the criteria for the simplest fuzzy learning, the membership functions
which satisfy these criteria are the Cauchy and Gaussian membership functions
shown in the equations (5) and (7) respectively, with the Cauchy function to be
preferred.
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