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Green Computing: Three Examples of How

Non-Trivial Mathematical Analysis Can Help

Olga Kosheleva and Vladik Kreinovich
University of Texas at El Paso

500 W. University
El Paso, TX 79968, USA

olgak@utep.edu, vladik@utep.edu

Abstract

Environment-related problems are extremely important for mankind,
the fate of humanity itself depends on our ability to solve these problems.
These problems are complex, we cannot solve them without using power-
ful computers. Thus, in the environmental research, environment-related
computing is one of the main computing-related research directions. An-
other direction is related to the fact that computing itself can be (and
currently is) harmful for the environment. How to make computing more
environment-friendly, how to move towards green computing – this is the
second important direction. A third direction is motivated by the very
complexity of environmental systems: it is difficult to predict how environ-
ment will change. This seemingly negative difficulty can be reformulated
in more positive terms: that by observing environmental processes, we can
find values which are difficult to compute. A similar observation about
quantum processes has led to successful quantum computing, so why not
use environmental processes themselves to help us compute? This is the
third direction in environment-related computing research. In this pa-
per, we provide three examples that show that in all three directions,
non-trivial mathematical analysis can help.

1 Computing and Environment: Three Direc-
tions

Computing and environment: three directions. Environmental issues are
critical for the survival of humankind. These issues are also very complex, with
complex dependencies that require computers to solve. This is probably the
most important relation between computing and environment: that we need to
use computers to solve complicated environment-related problems.

However, there are other relations between environment and computing.
One of the most important relations is that computing itself contributes to
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environmental problems – e.g., by consuming a large amount of energy, energy
that mostly comes from the non-renewable energy sources like fossils. To make
computing less damaging to the environment, to move towards environment-
friendly computing is the second important direction.

Finally, there is a third direction, motivated, in particular, by the success
of quantum computing; see, e.g., [41]. This success comes largely from the fact
that many quantum effects are complex and difficult to predict. This means that
by launching some quantum processes and observing the results, we can really
fast get the values whose computing on a regular computer would take a long
time. In other words, for the corresponding functions, using actual quantum
processes leads to faster computation than using a regular computer. It turns
out that many of such functions are practically useful – and this, in a nutshell, is
what quantum computing is largely about. But environmental processes are also
very complex, very difficult to predict – often even more difficult to predict that
typical quantum processes. So a natural idea is to use environmental processes
for computations. This is the third direction – which may sound promising, but
which, at this moment of time, is the least explored.

What we do in this paper. In this paper, we provide three examples that
show how non-trivial mathematical analysis can help in all three of these di-
rections: environment-related computing, environment-friendly computing, and
environment as computing.

2 Equidecomposability: an Example of
Environment-Related Computing

Recycling as an important part of environmental research. There are
many important problems in environment-related computing – and we ourselves,
together with our students, have participated in solving some of these problems;
see, e.g., [4, 8, 15, 16, 23, 24, 34, 35, 44, 45].

In this section, we will concentrate only on one these problems – namely, on
one of the most fundamental ones. This problem is related to the fact that one
of the main reasons why our civilization spends a lot of energy – and thus, con-
tributes to the worsening of the environmental situation – is that we constantly
produce new things: clothes, cars, computers, etc. Most of the manufacturing
processes consists of several stages on each of which we spend some energy. For
example, to produce a computer, we first need energy to extract the ores from
the mines, then we need energy to extract the corresponding metals from the
ores, we need energy to produce silicon and plastic, then we need energy to
combine them into parts, etc.

Each gadget has a limited period of use: cars break down, clothes deteriorate,
computers become too slow and obsolete in comparison with the new designs,
etc. To save energy – and thus, to save the environment – it is desirable to
recycle these gadgets – i.e., to use them to minimize the number of stages need
to produce new gadgets. For example, if we melt used aluminum cans into new
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ones, we do not need energy to extract aluminum from the aluminum ore (and
this requires, by the way, a lot of energy).

Recycling is one of the most important issues in environment-related prac-
tice.

When is recycling most efficient. The largest amount of savings in recycling
is when the material is largely intact, and the only difference between what we
have and what we want is the shape of this material. Sometimes, this is part of
the manufacturing: for example, when we tailor clothes, we start with material,
cut it into appropriate pieces, and sew them together. Sometimes, this is part
of recycling: if we have some old clothes in which most material is intact, a
tailor can cut it and make new clothes. If we have pieces of clothes which are
too small to be useful by themselves, we can sew them together to make a quilt.
If we have a metal sheet, and we need to make a tube, we can cut this sheet
into pieces and weld them together to form a tube. This is the type of recycling
– we will call it geometric recycling – that we will analyze in this section.

Geometric recycling as a mathematical problem. Let us describe this
situation in precise geometric terms. We are given an object of certain shape.
In mathematical terms, a shape is simply a set of 3-D points, i.e., a subset of the
3-D space P ⊂ IR3. We want to use this object to design an object of a different
shape Q. Ideally, we should simply cut the object A into several disjoint pieces

P = P1 ∪ . . . ∪ Pp, (1)

then move these pieces around, so that they form sets Q1, . . . , Qp, and combine
these sets Qi into the desired shape Q:

Q = Q1 ∪ . . . ∪Qp. (2)

Of course, a generic set is not always a realistic description of a part: for
example, we can have weird sets like the set of all rational numbers. T make
sure that we consider only practically implementable sets, we need to restrict
ourselves, e.g., to polytopes – they approximate any smooth or even non-smooth
objects with any needed accuracy, and thus, from the practical viewpoint, rep-
resent all possible shapes. So, in the above problem, we assume that the given
sets P and Q are polytopes, and that we are looking for polytopes Pi and Qi.

To perform the above procedure, we need, given two polytopes P and Q,
to find the polytopes Pi and Qi that satisfy the conditions (1) and (2) and for
which each polytope Qi can be obtained from the corresponding polytope Pi

by using some shifts and rotations; we will denote this by Pi ∼ Qi. Polytopes
P and Q for which such divisions are possible – i.e., which can be composed of
“equal” parts Pi ∼ Qi – are called equidecomposable. For each pair (P,Q), the
first natural question is: is such a decomposition possible at all?

Of course, rotations and shifts do not change the volume V , so we have
V (Pi) = V (Qi) for all i and thus, V (P ) = V (Q). Thus, only sets of equal volume
can be equidecomposable. So, this question makes sense only for polytopes of
equal volume.
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If such a decomposition of P and Q is possible, the next natural question is:
what is the smallest number of parts p needed for this process – since the fewer
cuts and “glue-ings” we need, the less energy we will spend on this process.

What is known: an early history of this mathematical question. For
polygons, the answer to a similar question has been known for some time: ev-
ery two polygons of equal area re equidecomposable. Since every polygon can
be represented as a union of disjoint triangles, this result can be proven if we
prove that every triangle is equidecomposable with a right rectangle (2-D box)
one of whose sides is equal to 1. This shows that each polygon is equidecom-
posable with a right rectangle whose one side is 1 and another side is equal to
the polygon’s area – and thus, every two polygons with equal area are indeed
equidecomposable.

In the 3-D cases, it is reasonable to try the same idea. We can similarly
represent each polytope as a union of tetrahedra (= triangular pyramids), but
it is not clear whether each tetrahedron is equidecomposable with a similar 3-
D box. The famous mathematician Gauss, universally recognized as the top
mathematician of his time – of Gaussian elimination, Gaussian distribution,
etc. fame – formulated an open question of whether a regular tetrahedron is
equidecomposable with a cube of the same volume.

This question became one of Hilbert’s problems. Gauss’s question re-
surfaced in 1900, when, in preparation for the 1900 International Congress of
Mathematics, mathematicians asked David Hilbert – universally recognized as
the top mathematician of his time – to prepare the list of most important chal-
lenges that the 19 century mathematics was leaving for the 20 century math-
ematicians to solve. Hilbert prepared a list of 23 problems, one of which –
Problem 3 – repeated Gauss’s question about equidecomposability.

There is an unclear story about this problem, since this problem was the first
to be solved – it was solve by Hilbert’s student Dehn in the same year [12, 13]:
namely, Dehn proved that a regular tetrahedron is not equidecomposable with
the cube of the same volume. This suspiciously fast solution – other problems
took decades to solve – and the fact that it was solved by Hilbert’s own student
gave rise to a rumor that the problem was actually solved before Hilbert’s talk,
but Hilbert included it in the list of his problems – as supposedly still an open
problem – to boost the status of his student. Whether this rumor is true or not,
this result was very impressive: an answer to a challenging problem that Gauss
himself, named the King of Mathematicians, tried to solve and could not.

Comment. It should be mentioned that Dehn’s results have been later simplified
and generalized; see, e.g., [5, 6, 26, 46].

Algorithmic aspects of Dehn’s result. Dehn’s result was a purely math-
ematical result: both Gauss and Hilbert emphasized this problem not because
of recycling applications – this came later (see, e.g., [29]) – but because of
their interest in axiomatic description of geometry (and related non-Euclidean
geometries). Specifically, in the 2-D case, since every polygon is equidecompos-
able with a square, it is easy to axiomatically describe what is an area A(P ) of
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a polygon P : it is sufficient to assume:

• that for a square of side a, the area is a2, and

• that for two polygons that have no common interior points, A(P ∪Q) =
A(P ) +A(Q).

What Dehn proved was that in the 3-D case, similar two conditions:

• that the volume of a cube with side a is a3 and

• that V (P ∪Q) = V (P ) + V (Q),

are not sufficient to uniquely determine the volume on the set of all polytopes.
In addition to the usual volume, there are other functions V ′(P ) that satisfy
these two properties.

Dehn’s proof was purely mathematical, he did not describe how to compute
any of these alternative functions V ′(P ) – and he did not even formulate such a
question because at that time, the notions of what is computable and what is not
have not yet been formalized; this was only done by Turing in the 1930s [49].
However, nowadays, when computability is precise defined (see, e.g., [33]), a
natural question is: are these alternative functions V ′(A) computable?

An answer to this question was only obtained in a 1980 paper [27] (see also
[28]), where it was proven that the only computable function V (A) satisfying the
above two properties is the usual volume. Interestingly, the result was based on
complex mathematics – namely, on homological algebra ideas and results, see
[6, 46].

Relation to logic. One of the areas in which computability has been actively
studied is logic – logic was one of the first areas where a non-computability
results were proven, and it remains one of the main areas in which researchers
study what is computable, and if yes, how fast this can be computed. From this
viewpoint, it is important to mention papers [10, 32] that connected equidecom-
posability and logics.

Can we algorithmically check whether two polytopes are equidecom-
posable: precise question and a partial answer. It is reasonable to con-
sider polyhedra which can be constructed by geometric constructions. It is
well known that for such polyhedra, all vertices have algebraic coordinates (i.e.,
values which are roots of polynomials with integer coefficients); see, e.g., [11].

So, the above question can be formulated in the following precise form (see,
e.g., [39]): is there an algorithm for checking whether two given polyhedra with
algebraic coordinates are equidecomposable?

A partial answer to this question – described in [32] – follows from the fact
that many related formulas can be described in the following first order theory
of real numbers (also known as elementary geometry): a theory in which:

• variables run over real numbers,

• terms t, t′ are obtained from variables by addition and multiplications,
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• elementary formulas are of the type t = t′, t < t′, t ≤ t′, and

• arbitrary formulas are constructed from the elementary ones by adding
logical connectives & (“and”), ∨ (“or”), ¬ (“not”), and quantifiers ∀x
and ∃x.

A well-known result by Tarski [47] is that this theory of decidable, i.e., that there
exists an algorithm which, given a formula from this language, decides whether
this formula holds. The original Tarski’s algorithm required an unrealistically
large amount of computation time; however, later, faster algorithms have been
invented; see, e.g., [3, 38].

For existential formulas of the type ∃x1 . . . ∃xm F (x1, . . . , xm), these algo-
rithms not only return “true” or “false ” – when the formula is true, they
actually return some values xi which make the formula F (x1, . . . , xm) true.

Let us apply this result to our problem. Each polyhedron Pi can be de-
composed into tetrahedra. So, without losing generality, we can assume that P
can be decomposed into tetrahedra which can be then moved one-by-one and
reassembled into Q.

We say that P and Q are n-equidecomposable if they can be both decomposed
into finitely many pair-wise congruent tetrahedra Pi ∼ Qi in such a way that a
total number of all the vertices of all these tetrahedra does not exceed n.

Let’s fix a coordinate system. Then a tetrahedron is described by the coor-
dinates of its 4 vertices, i.e., by 12 (finitely many) real numbers. Let’s denote
these 12 numbers by a 12-dimensional vector ~x. The coordinates of the vertices
of the tetrahedra which form a decomposition are also real numbers (no more
than 3n of them, because there are no more than n vertices). Congruence can
be expressed as equality of all the distances, which, in its turn, is equivalent
to equality of their squares. So, it is expressible by an elementary formula of
elementary geometry.

The fact that P and Q are n-equidecomposable (we will denote it by
sn(P,Q)) means that there exist a decomposition of P and a decomposition of Q
which are pair-wise congruent. Therefore, sn(P,Q) is constructed from elemen-
tary formulas by applying existential quantifiers: sn(P,Q) ↔ ∃x1 . . . ∃xmn

Fn.
Hence, sn(P,Q) is also a formula of elementary geometry. Thus, for every n,
we can check whether sn(P,Q) holds or not.

If we know that P and Q are equidecomposable, this means that they are
n-equidecompsable for some n. We can thus (algorithmically) check the formula
s1(P,Q), s2(P,Q), . . ., until we find the first n for which the existential formula
sn(P,Q) ≡ ∃x1 . . . ∃xmn

Fn(x1, . . . , xmn
) holds.

For this n, as we have mentioned, the elementary geometry algorithms also
return the values xi for which Fn(x1, . . . , xmn

) holds, i.e., the coordinates of the
tetrahedra which form the desired decompositions of P and Q.

Comment. It is known that algorithms for deciding elementary geometry cannot
be very fast: e.g., for purely existential formulas like the ones we use, there is
an exponential lower bound an for the number of computational steps.
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However, this is OK, because a similar exponential lower bound exists
for constructing the corresponding decompositions – even for polygons; see,
e.g., [29].

Can we algorithmically check whether two polytopes are equidecom-
posable: final answer. If two polyhedra are equidecomposable, then, by
applying the above algorithm for n = 1, 2, . . ., we will eventually find the cor-
responding decompositions. However, the above algorithm does not inform us
when the polyhedra are not equidecomposable – in this case, the above algo-
rithm will simply run forever and never stop.

It turns out that we can algorithmically decide whether two given polyhedra
are equidecomposable or not; see [31]. However, this algorithm requires a lot of
non-trivial mathematics to describe, see, e.g., [2, 9, 14, 20, 21].

Remaining open questions. Can we always check equidecomposability in
exponential time? When can we check it faster?

What if instead of looking for a perfect solution – equidecomposability – we
look for an approximate solution, in which some small volume of the material
can be wasted?

3 Reversibility: an Example of Environment-
Friendly Computing

Why reversibility. Computers consume a large proportion of the world’s en-
ergy, thus contributing to the environmental problems. How can we decrease
this amount? Some decrease can be achieved by engineering, but there is also
a fundamental reason for energy consumption and for the fact that computers
warm up their environment. This is related to statistical physics and ther-
modynamics (see, e.g., [17, 48]), according to which every irreversible process
generates heat. Specifically, the amount of heat Q generated by each process
is proportional to the product T · S of the temperature T and the increase in
entropy S – and this increase is, in its turn, proportional to the numbers of bits
of information lost in the process.

And irreversibility is ubiquitous in computing: computers are formed from
logical gates such as “or”- and “and”-gates, and the corresponding operations
are not reversible. For example, when we know the result y = x1 &x2 of ap-
plying the “and”-gate to the inputs x1 and x2, we cannot uniquely reconstruct
the inputs: when y = 0, this could mean (x1, x2) = (0, 0), this could mean
(x1, x2) = (0, 1), or this could mean (x1, x2) = (1, 0). So, to decrease com-
puter’s contribution to warming, we need to make sure that all operations are
reversible.

This is, by the way, what happens in quantum computers [41], since on
the microscopic level of quantum processes, all processes are reversible – both
Newton’s equations of classical physics and Schroedinger’s equations of quantum
physics are reversible [17, 48].
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Reversibility of computing with real numbers: general discussion.
Most of the time, computer process real numbers – i.e., measurement results.
What does reversibility means in this case? This problem was analyzed in [18]
(see also [19]); let us provide a reasonably detailed (and somewhat clarified)
description of this paper’s results.

First, we should have at least as many outputs as we have inputs – otherwise,
to reconstruct the inputs, we will have fewer equations than unknowns, and we
know that in this case, this reconstruction problem usually has many solution.

This property is necessary, but not sufficient. Let us explain why. Indeed,
each measurement result xi has some accuracy δi. Measurement results differing
by less than δi may correspond to the same actual values of the corresponding
quantity. So, in fact, while we can have many different tuples (x1, . . . , xn), in
reality, many of these tuples are indistinguishable. The set of all possible tuples
is thus divided into boxes of volume proportional to δ1 · . . . · δn, and the number
of substantially different tuples is equal to the volume of the whole domain of
possible value divided by the volume of this box.

Each transformation transforms an input domain into an output domain.
Reversibility means that if we know the output, we can uniquely reconstruct
the input. Thus, for a transformation to be reversible, there needs to be a
one-to-one correspondence between input boxes and output boxes. So, when
an input domain consists of several input boxes, the domain obtained after the
transformation should consist of exactly the same number of output boxes. Since
– at least locally – all input boxes have the same volume, this means that the
volume of the domain is proportional to the number of such boxes. Similarly,
the output volume is proportional to the number of output boxes. Thus, the
volume of the output domain should be proportional to the volume of the input
domain. It is known that for small domains, the output volume is equal to the
input volume multiplied by the determinant

D(x1, . . . , xn)
def
= det

∥∥∥∥ ∂fi∂xj
(x1, . . . , xn)

∥∥∥∥
of the matrix of partial derivatives. Thus, the reversibility requirement means
that this determinant should be constant: D(x1, . . . , xn) = const.

Reversibility of computing with real numbers: first case. Let us first
consider the case when, in the original transformation, the number of outputs
is the same as the number of inputs:

(x1, . . . , xn) 7→ (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)).

Of course, for many such real-life transformations – e.g. for a frequent trans-
formation of all inputs into a log-scale (x1, . . . , xn) 7→ (ln(x1), . . . , ln(xn)) – the
determinant D(x1, . . . , xn) is not a constant. To make it constant, we need to
add at least one auxiliary variable u, i.e., replace the original transformation
with a new transformation

(x1, . . . , xn, u) 7→ (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn), vf (x1, . . . , xn, u))
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for an appropriate function vf (x1, . . . , xn, u).
Which auxiliary function should be choose? As shown in [18], the require-

ment that for the new enlarged transformation the corresponding (n + 1)-
dimensional determinant is equal to a constant c implies that

vf (x1, . . . , xn, u) =
c · u

det

∥∥∥∥ ∂fi∂xj
(x1, . . . , xn)

∥∥∥∥ + C

for some constant C.

Comment. The value of C is irrelevant: we can always re-scale the auxiliary
variable u into u′ = u− C and thus, make this constant equal to 0.

Reversibility of computing with real numbers: second case. What if
the number of outputs is smaller than the number of inputs? In this case,
we need to add additional outputs, to preserve reversibility. For example, a
binary operation (x1, x2) 7→ f(x1, x2) has to be replaced with a transformation
(x1, x2) 7→ (f(x1, x2), g(x1, x2)) for an appropriate auxiliary function g(x1, x2).
The reversibility requirement – that the volume must be preserved – takes the
form

∂f

∂x1
· ∂g
∂x2
− ∂f

∂x2
· ∂g
∂x1

= const.

In this case, there is no general analytical expression for the solution, but there
are explicit expressions for the usual binary operations f(x1, x2). For example,
for addition f(x1, x2) = x1 + x2, one of the possible solutions is subtraction
g(x1, x2) = x1−x2; for multiplication f(x1, x2) = x1 ·x2, we can take g(x1, x2) =
ln(x1/x2), etc.

Comment. In this section, mathematics is much simpler than in the previous
one, but still solving partial differential equations is not exactly trivial mathe-
matics.

4 Gaia Hypothesis Made Rational: an Example
of Using Environment for Computing

Physics vs. study of environment. The main difference between physics
and study of environment is that:

• in physics, we usually have a theory that explains all – or at least almost
all – observations, that predict most important future events, while

• in the study of environment, no matter how more complex we make our
models, we are far from accurate predictions.

To some extent, the same is true in physics: theories change, they are up-
dated. After Newton, most physicists were under the impression that Newto-
nian physics would be sufficient to explain all the world’s phenomena – and until
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the last 19 century, it was mostly sufficient. However, new observations lead
to the need to replace Newtonian physics with more accurate relativistic and
quantum approaches. Many physicists actually believe that in physics too, no
matter what model we propose, no matter what law of nature we discover that
fits all known observations, eventually a new observation will appear that will
be inconsistent with this law – and thus, the law will need to be modified; see,
e.g., [17, 48]. In this section, we will describe the consequences of this widely
spread belief.

How this belief affects computations. The above belief means, in particu-
lar, that the sequence of observations is not computable – if it was computable,
i.e., if there existed an algorithm that predicts all observations, then this algo-
rithm would not need any eventual modifications and would, thus, contradict
this belief.

In other words, according to this belief, simply observing the world can
help us come up with values that cannot come from any computations – i.e.,
observations have the ability beyond computations. Since observations have
this beyond-usual-computations ability, it is reasonable to expect that using
these observations in computations can speed up the computation process. This
indeed turned out to be the case – although, similarly to the previous two
sections, this conclusion requires some non-trivial mathematics.

To describe the exact result, we need to briefly recall several notions from
computational complexity; for details, see, e.g. [33, 43]. One of the main tasks
of computational complexity is to distinguish between:

• feasible algorithms – i.e., algorithms that require reasonable computation
time for inputs of reasonable length – and

• algorithms which require so much computation time that they are not
practically possible: e.g., that require, for inputs of length 100, longer
time than the lifetime of the Universe.

How to clearly separate feasible from non-feasible algorithms is still an open
problem. At present, the best formalization – that, in most case, adequately
describes feasibility – is to define an algorithm A to be feasible if for there is a
polynomial P (n) such that for each input of size n, this algorithm requires time
bounded by P (n).

The next natural question is which problems can be solved by feasible algo-
rithms. To formalize this question, we need to formalize what is a problem. In
most practical problems, while the problem itself may be difficult to solve, it is
feasible to check whether a candidate for a solution is indeed a solution. For
example:

• it is difficult to come up with a proof of a mathematical statement, but

• once someone gives us a text that is supposed to be a detailed proof, it
is straightforward to check each step and confirm (or not) whether this is
indeed a correct proof, with no unproven gaps.
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The class of such problems – for which, once we have a candidate for a solution,
we can feasibly check whether it is indeed a solution – is denoted by NP. For some
of these problems, there is a feasible algorithm; the class of all such problems is
denoted by P.

Whether all problems can be feasibly solved, i.e., whether P is equal to NP,
is not known: this is a famous open problem. What is known is that in the class
NP there are problems which are the most difficult in this class – in the sense
that every other problem from the class NP can be feasible reduced to each of
these problems. Such problems are known as NP-complete. Historically the first
example of an NP-complete problem is the following propositional satisfiability
(SAT) problem:

• given a propositional formula, i.e., an expression obtained from the
Boolean (true-false) variables by using “and”, “or”, and “not”,

• find the values of these variables that make this formula true – or return
a message that this formula is always false.

The paper [30] studied what can be computed if we consider “physical”
algorithms, i.e., algorithms, that, in addition to usual computational step, can
access (and use) unrelated observations of the physical world. In this paper, it
is proven that there exists a feasible physical algorithm A with the following
property. For every ε > 0 and for every integer n, there exists a larger integer
N > n for which the proportion of SAT formulas of length N that is correctly
solved by this algorithm A is ≥ 1 − ε. In other words, if we use observations,
then we can feasible solve most instances of hard problems. A similar result
holds for all other NP-complete problems. So, under the assumption that the
physicists’ belief is correct, observations indeed help computations.

Comment. The paper [30] uses yet another area of non-trivial mathematics: the
notions of meager sets, also known as sets of Baire first category; see, e.g., [25,
42].

Why environment? The above result is about observations in general: we
can observe stars in the sky, we can observe how elementary particles inter-
act in an accelerator, etc. So why are we citing this result in a paper about
environment-related applications? The reason is simple: to get good results, we
need a sufficiently large number of observations – observations that cannot be
explained by simple formulas. We can get a lot of data by observing stars in the
sky or planets, but their visible motion is well described by reasonably simple
algorithms: already ancients could predict solar eclipses many years ahead.

Micro-world observations are not that easy to predict, but each observation
requires a costly experiment, so we do not have that many data points. We have
a lot of not-easy-to-predict data points from geological sciences, but much more
data comes from observing environment: for environment-related data, we have
the same spatial variability as for the geological data, but environmental data
also has temporal variability, so instead of 2-D or 3-D data, we now have 3-D or
4-D data.
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What is Gaia hypothesis. As we have mentioned, the reason why we believe
that environmental data can be helpful in computing is that this data is difficult
to predict. But there is another known phenomenon which is also very difficult
to predict – the behavior of human beings. In contrast to planets, we are
not deterministic machines, we make choices, and these choices are difficult to
predict. A natural idea is thus to conclude that the Earth is, in some reasonable
sense, an intelligent being – similar to us. This, in a nutshell, is the main idea
of the so-called Gaia hypothesis; see, e.g., [37].

At first glance, this hypothesis sounds like an unscientific mysticism; how-
ever, researchers made some sense of this hypothesis; see, e.g., [1, 36, 50]. What
we propose is yet another rational interpretation of this hypothesis. Indeed,
what is intelligence? It is largely the ability to solve complex problems – whether
they are real-life complex problems or abstract ones. How do we know that some-
one has intelligence? Maybe we observe this person solving problems, maybe
this person helps us solve complex problems.

From this viewpoint, since observing the environment can help us solve com-
plex problems, we can therefore naturally say that in this sense, the Earth is an
intelligent being – which is exactly what the Gaia hypothesis is claiming.

5 Conclusion

In this paper, we showed that non-trivial mathematics can be helpful in all
three research directions that relate computing and environment. Based on
these examples, we believe that we need other non-trivial mathematical ideas
to solve other related problems. Let us jointly look for such solutions!
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