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ABSTRACT 

As a result of applying fuzzy rules, we get a fuzzy set describing possible control values. In automatic control systems, we need 

to defuzzify this fuzzy set, i.e., to transform it to a single control value. One of the most frequently used defuzzification 

techniques is centroid defuzzification. From the practical viewpoint, an important question is: how accurate is the resulting 

control recommendation? The more accurately we need to implement the control, the more expensive the resulting controller. 

The possibility to gauge the accuracy of the fuzzy control recommendation follows from the fact that, from the mathematical 

viewpoint, centroid defuzzification is equivalent to transforming the fuzzy set into a probability distribution and computing the 

mean value of the control. In view of this interpretation, a natural measure of the accuracy of a fuzzy control recommendation 

is the standard deviation of the corresponding random variable. 

Computing this standard deviation is straightforward for the traditional [0,1]-based fuzzy logic, in which all experts’ degrees 

of confidence are represented by numbers from the interval [0,1]. In practice, however, an expert usually cannot describe his/her 

degree of confidence by a single number, a more appropriate way to describe his/her confidence is by allowing to mark an 

interval of possible degrees. In this paper, we provide an efficient algorithm for estimating the accuracy of fuzzy control 

recommendations under such interval-valued fuzzy uncertainty.   

 

Keywords: Fuzzy control, Interval-valued fuzzy, Accuracy of fuzzy control recommendation. 

 

INTRODUCTION 

THE MAIN OBJECTIVE OF THIS PAPER: IN BRIEF 

One of the important measures of uncertainty for a fuzzy set with a membership function 𝜇(𝑥) is its variance [1] 

  

𝑉 =
∫ 𝑥2⋅𝜇(𝑥) 𝑑𝑥

∫ 𝜇(𝑥) 𝑑𝑥
− (

∫ 𝑥⋅𝜇(𝑥) 𝑑𝑥

∫ 𝜇(𝑥) 𝑑𝑥
)

2

                                                                                                                                                   (1) 
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In many practical situations, we have interval-valued fuzzy sets, in which case, for each value 𝑥, we only know the interval 

[ 𝜇(𝑥), 𝜇(𝑥)] for the corresponding value 𝜇(𝑥) of the membership function. So, all membership functions 𝜇(𝑥) for which 

𝜇(𝑥) ∈ [ 𝜇(𝑥), 𝜇(𝑥)] for all 𝑥 are possible. 

 

For different possible membership functions 𝜇(𝑥), in general, the variance is different. The only thing that can compute is the 

range [ 𝑉, 𝑉 ] of possible values of the variance. The main objective of this paper is to come up with an efficient algorithm for 

computing this interval. 

 

BACKGROUND AND IMPORTANCE OF THIS RESEARCH 

Need for fuzzy control: In many practical situations, we do not have a good algorithm for controlling a system, but we have 

human experts who can control the corresponding class of systems: drivers drive cars, pilots control planes, engineers control 

operations of a petrochemical plant, etc. 

 

In each application area, some experts are more skilled, some are less skilled. In the ideal world, every car should be driven by 

the most skilled driver, every patient should be treated by the most skilled medical doctor, etc. In real life, however, there are 

not that many extra class drivers – and much more cars, a few top medical doctors – and millions of patients. 

 

To take care of all the remaining cars, all the remaining patients, it is desirable to incorporate the knowledge of the top experts 

in an automated control system. To implement such a system, we need to be able to indicate, for each possible situation – i.e., 

for each possible combination of variables describing the current situation – the exact value(s) of the control that we need to 

apply. It would be nice if we could extract this value from the experts, but this is rarely possible. For example, in the US, most 

people can drive cars, but if you ask a person a specific numerical question about driving strategy, this person will not be able 

to answer. Let us give an example. You are driving on a one-lane freeway with a speed of 100 km/h, the car in front of you is 

20 m ahead, and it suddenly brakes to 95 km/h. What do you do? The correct answer that everyone gives is: we need to brake 

a little bit. But computers do not understand “a little bit”, an automated system needs to know for how many milliseconds you 

press the brake and with what exactly force – this no one can explain. 

 

In many situations, all we get from experts are numerous rules formulated in terms of words from the natural language like “a 

little bit”. It is therefore necessary to translate this imprecise (“fuzzy”) knowledge into a precise control strategy. This need 

was the main motivation for Lotfi Zadeh to come up with fuzzy techniques in general and fuzzy control in particular [2-7].  

 

How fuzzy control works: a very brief description: Based on the original imprecise rules, we estimate, for each possible 

control value 𝑥, to what degree this value is reasonable in a given situation. The corresponding degree is usually described by 

a number 𝜇(𝑥) from the interval [0,1], so that 1 means that we are maximally sure that this control value is reasonable, 0 means 

that we are absolutely sure that it is not reasonable, and values between 0 and 1 correspond to intermediate degrees of certainty. 

Because of the above description, the largest possible value of the degree 𝜇(𝑥) is always equal to 1. 
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We know the value 𝜇(𝑥) for all 𝑥, i.e., in other words, we know a  function that assigns the value 𝜇(𝑥) to every input 𝑥. This 

function is known as the membership function. To implement an automated control, we need to select a single control value 𝑋. 

This selection is known as defuzzification. The most widely used defuzzification is the  centroid defuzzification, in which we 

take  

 

𝑋 =
∫ 𝑥⋅𝜇(𝑥) 𝑑𝑥

∫ 𝜇(𝑥) 𝑑𝑥
.                                                                                                                                                                             (2) 

 

Need for interval-valued fuzzy techniques: Traditional fuzzy techniques start by experts helping to clarify natural-language 

words like “a little bit” by assigning a degree of certainty to statement like “0.1 is a little bit”, “0.2 is a little bit”, etc. The 

corresponding degrees are then transformed into the final degrees 𝜇(𝑥). 

 

However, just like an expert cannot describe exactly for how many milliseconds he or she presses the brake, the same expert 

cannot describe his/her degree of certainty by a single number on the scale from 0 to 1. It is much more realistic to ask the 

expert to mark a range (= interval) of possible degree values, e.g., from 0.8 to 0.9. Another situation when we get an interval is 

when we have several top experts and they have somewhat different degrees. In this case, it makes sense to take the interval 

containing all these values. 

 

If we start with such interval-valued degrees, then for each possible control value 𝑥, we also only know the interval [ 𝜇(𝑥), 𝜇(𝑥)] 

of the possible value of the degree 𝜇(𝑥). Such a situation is known as interval-valued membership function. 

 

This means that, in principle, we can have many different functions 𝜇(𝑥) as long as for every 𝑥, we have 𝜇(𝑥) ∈ [ 𝜇(𝑥), 𝜇(𝑥)].  

 

How accurate is the recommended control value: a problem: An important practical question is: how imprecise is it? For 

example, if the recommended control value is 0.1, it does not necessarily mean that we have to apply this control: if it is 0.1 ±

0.2, then we clearly are not sure whether  control is needed in the first place, so it is better not to apply any control – and thus 

to avoid wasting fuel (and also to avoid unnecessary wiggling). 

 

There are several reasons why control recommendations are not absolutely optimal. In general, the models that we use to design 

a controller are approximate, and methods that we use to optimize the control are also approximate. For fuzzy control, there is 

an additional reason why the control recommendations are inaccurate: since we start with the imprecise expert knowledge, of 

course, the resulting control value 𝑋 is also imprecise. 

 

One of the proposed measures of this imprecision is the variance (1). It is therefore practically important to be able to estimate 

this variance. 

 

RESEARCH DONE BY PREVIOUS RESEARCHERS ON SIMILAR PROBLEMS 

Why centroid defuzzification and why variance: How can we select a single value based on the membership function? How 

can we gauge the accuracy of this estimation? 
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Natural answers to these questions come from the fact – mentioned several times by Zadeh himself – that, from the purely 

mathematical viewpoint, it is easy to transform each membership function 𝜇(𝑥) – for which max 
𝑥

𝜇(𝑥) = 1 into a probability 

density function 𝑓(𝑥) for which ∫ 𝑓(𝑥) 𝑑𝑥 = 1, and vice versa. Indeed, if we start with a membership function 𝜇(𝑥), then we 

can normalize it by diving by its integral and get the probability density function  

 

𝑓(𝑥) =
𝜇(𝑥)

∫ 𝜇(𝑦) 𝑑𝑦
.                                                                                                                                                                          (3) 

 

Vice versa, if we know a probability density function 𝑓(𝑥), then we can normalize this function by dividing it by its largest 

value and get a membership function  

 

𝜇(𝑥) =
𝑓(𝑥)

max
𝑦

𝑓(𝑦)
.                                                                                                                                                                           (4) 

 

For a random variable with probability density 𝑓(𝑥), there is a natural way to select a single value – namely, we can take the 

mean  

 

𝑋 = 𝐸[𝑥] =
d𝑒𝑓

∫ 𝑥 ⋅ 𝑓(𝑥) 𝑑𝑥.                                                                                                                                                      (5) 

 

Substituting the expression (3) into this formula, we get exactly the centroid value (2). 

 

For a random variable, a natural way to describe possible deviations from the mean is to take the mean squared difference 

between the variable 𝑥 and its means, i.e., the  variance  

 

𝑉 =
d𝑒𝑓

𝐸[(𝑥 − 𝐸[𝑥])2].                                                                                                                                                                 (6) 

 

Then, possible deviations of 𝑥 from 𝐸[𝑥] can be characterized by the  standard deviation  

 

𝜎 =
d𝑒𝑓

√𝑉.                                                                                                                                                                                     (7) 

 

It is known that the variance can be equivalently described as 

  

𝑉 = 𝐸[𝑥2] − (𝐸[𝑥])2 = ∫ 𝑥2 ⋅ 𝑓(𝑥) 𝑑𝑥 − (∫ 𝑥 ⋅ 𝑓(𝑥) 𝑑𝑥)2.                                                                                                   (8) 

 

Substituting, into this formula, the expression (3) for the probability density function corresponding to the given membership 

function 𝜇(𝑥), we get exactly the variance (1). Thus, the variance (1) – and the corresponding standard deviation (7) – describe 

how accurate is the fuzzy control recommendation.  
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Known efficient algorithms for computing the range of the centroid: For different functions 𝜇(𝑥) satisfying this condition, 

the formula (2) leads, in general, to different values 𝑋. All we can do is find the set of possible values 𝑋, i.e., the interval 

  

[ 𝑋, 𝑋 ] = {
∫ 𝑥⋅𝜇(𝑥) 𝑑𝑥

∫ 𝜇(𝑥) 𝑑𝑥
: 𝜇(𝑥) ∈ [ 𝜇(𝑥), 𝜇(𝑥)]    𝑓𝑜𝑟  𝑎𝑙𝑙   𝑥}.                                                                                                        (9) 

 

This formula looks very non-constructive – how can we enumerate all possible functions, there are too many of them. The good 

news is that there exist reasonably efficient algorithms for computing this interval; see, [8-19,4], for the latest developments. 

 

Specifically, to find the smallest possible value 𝑋 of the centroid 𝑋, it is sufficient to find the value 𝑥0 for which the value 

𝑋(𝑚𝑥0
) is the smallest, where the function 𝑚𝑥0

(𝑥) is defined as follows:  

  

• for 𝑥 < 𝑥0, we have 𝑚𝑥0
(𝑥) = 𝜇(𝑥), and  

• for 𝑥 > 𝑥0, we have 𝑚𝑥0
(𝑥) = 𝜇(𝑥).  

 

This reduces the original difficult-to-optimize problem of minimizing the centroid value to a much simpler problem of 

optimizing a function of one variable, a problem for which many efficient algorithms exist. 

 

To find the largest possible value 𝑋 of the centroid 𝑋, it is sufficient to find the value 𝑥0 for which the value 𝑋(𝑀𝑥0
) is the 

largest, where the function 𝑀𝑥0
(𝑥) is defined as follows:  

  

• for 𝑥 < 𝑥0, we have 𝑀𝑥0
(𝑥) = 𝜇(𝑥), and  

• for 𝑥 > 𝑥0, we have 𝑀𝑥0
(𝑥) = 𝜇(𝑥).  

 

This also reduces the original difficult-to-optimize problem of maximizing the centroid value to a much simpler problem of 

optimizing a function of one variable, a problem for which many efficient algorithms exist.  

  

In contrast, computing bounds on the variance remains an open problem: In the interval-valued case, instead of a single 

value of the variance 𝑉 (and of the standard deviation 𝜎), we get an interval [ 𝑉, 𝑉 ] of possible values:  

 

[ 𝑉, 𝑉 ] = {𝑉(𝜇): 𝜇(𝑥) ∈ [ 𝜇(𝑥), 𝜇(𝑥)]    𝑓𝑜𝑟  𝑎𝑙𝑙   𝑥},                                                                                                             (10) 

 

where 𝑉(𝜇) is determined by the formula (1). 

 

Here, the situation with computations is not so good: there exist some algorithms, but they are not as simple and efficient as 

for the formula (9), see, e.g., [1]. In this paper, we design an efficient algorithm for computing the range (10). 
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METHOD 

THIS IS THEORETICAL RESEARCH: NO DATA IS USED 

First, it is important to mention that this paper is theoretical: we just develop an efficient algorithm. This development is based 

on a theoretical analysis, not on any specific data. So, when we talk about methods that we used in this research, we mean 

theoretical methods, not methods for processing and analyzing data. 

 

FIRST METHOD THAT WE USE IN THIS RESEARCH: CALCULUS TECHNIQUES 

Why calculus techniques: We are interested in computing the range of possible values of an expression. This means finding 

its largest and its smallest values. One of the main techniques for finding the largest and smallest values of a function is calculus 

– finding the largest and smallest values was one of the main motivations for developing calculus in the first place. 

 

Let us recall how calculus can be used to find these largest and smallest values.  

 

Functions of one variable: analysis: Let us start with the simplest case of functions 𝐹(𝑣) of one variable. If we are looking 

for the maximum or the minimum of a function of one variable, then, according to calculus, both the maximum and the 

minimum are attained at points 𝑣 at which the derivative 𝐹′(𝑣) is equal to 0. 

 

If we are looking for the minimum or the maximum of a function on an interval, then the situation is somewhat more 

complicated. If this maximum or minimum is attained inside the interval, then at this point, the derivative is still equal to 0. 

However, the minimum and maximum can also be attained at the endpoints of an interval [ 𝑣, 𝑣 ] – this is the case, e.g., when 

the function 𝐹(𝑣) is linear. 

 

In this case, for minimum, we have the following conclusions: 

• if the minimum is attained at the lower endpoint 𝑣, this means that at this point, the function cannot be decreasing –                

otherwise, the values for nearby points 𝑣 + 𝜀 will be even smaller; thus, we must have 𝐹′(𝑣) ≥ 0;  

• similarly, if the minimum is attained at the upper endpoint 𝑣, this means that at this point, the function cannot be 

increasing – otherwise, the values for the nearby points 𝑣 − 𝜀 will be even smaller; thus, we must have 𝐹′(𝑣) ≤ 0.  

 

 For maximum, we have similar conclusions:   

• if the maximum is attained at the lower endpoint 𝑣, this means that at this point, the function cannot be increasing – 

otherwise, the values for nearby points 𝑣 + 𝜀 will be even larger; thus, we must have 𝐹′(𝑣) ≤ 0;  

• similarly, if the maximum is attained at the upper endpoint 𝑣, this means that at this point, the function cannot be 

decreasing – otherwise, the values for the nearby points 𝑣 − 𝜀 will be even larger; thus, we must have 𝐹′(𝑣) ≥ 0.  

  

 Functions of one variable: conclusions: For a function of one variable, at the point 𝑚 where a function 𝐹(𝑣) attains its 

minimum on a given interval [ 𝑣, 𝑣 ]:   
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• either this minimum is attained inside the interval, and 𝐹′(𝑚) = 0;  

• or this minimum is attained at the left endpoint 𝑚 = 𝑣 of this interval, and 𝐹′(𝑚) ≥ 0;  

• or this minimum is attained at the right endpoint 𝑚 = 𝑣 of this interval, and 𝐹′(𝑚) ≤ 0.  

 

Similarly, at the point 𝑀 where a function 𝐹(𝑣) attains its maximum on a given interval [ 𝑣, 𝑣 ]:   

• either this maximum is attained inside the interval, and 𝐹′(𝑀) = 0;  

• or this maximum is attained at the left endpoint 𝑀 = 𝑣 of this interval, and 𝐹′(𝑀) ≤ 0;  

• or this maximum is attained at the right endpoint 𝑀 = 𝑣 of this interval, and 𝐹′(𝑀) ≥ 0.  

  

General case: functions of several variables: When a function of several variables 𝐹(𝑣1, … , 𝑣𝑛) attains its minimum on a 

given box  

 

 [ 𝑣1, 𝑣1] × … × [ 𝑣𝑛, 𝑣𝑛], 

 

at some point 𝑚 = (𝑚1, … , 𝑚𝑛), then clearly for each 𝑖, this means that the value 𝐹(𝑚1, … , 𝑚𝑛) is the smallest possible value 

of the given function. This implies that the function 𝐹𝑖(𝑣𝑖) =
d𝑒𝑓

𝐹(𝑚1, … , 𝑚𝑖−1, 𝑣𝑖 , 𝑚𝑖+1, … , 𝑚𝑛) of one variable attains its 

minimum for 𝑣𝑖 = 𝑚𝑖. For this auxiliary function of one variable, the derivative is nothing else but the 𝑖-th partial derivative 

𝜕𝐹

𝜕𝑣𝑖
 of the original function 𝐹(𝑣1, … , 𝑣𝑛). Thus, we can apply the previously described calculus-based conclusions and imply 

that for each 𝑖:  

• either the value 𝑚𝑖 is attained inside the corresponding interval [ 𝑣𝑖, 𝑣𝑖], and 
𝜕𝐹

𝜕𝑣𝑖
= 0;  

• or the value 𝑚𝑖 is located at the left endpoint 𝑚𝑖 = 𝑣𝑖 of this interval, and 
𝜕𝐹

𝜕𝑣𝑖
≥ 0;  

• or the value 𝑚𝑖 is located at the right endpoint 𝑚𝑖 = 𝑣𝑖 of this interval, and 
𝜕𝐹

𝜕𝑣𝑖
≤ 0.  

 

 Similarly, when a function of several variables 𝐹(𝑣1, … , 𝑣𝑛) attains its minimum on a given box at some point 𝑀 =

(𝑀1, … , 𝑀𝑛), then for each 𝑖:  

• either the value 𝑀𝑖 is attained inside the corresponding interval [ 𝑣𝑖, 𝑣𝑖], and 
𝜕𝐹

𝜕𝑣𝑖
= 0;  

• or the value 𝑀𝑖 is located at the left endpoint 𝑀𝑖 = 𝑣𝑖 of this interval, and 
𝜕𝐹

𝜕𝑣𝑖
≤ 0;  

• or the value 𝑀𝑖 is located at the right endpoint 𝑀𝑖 = 𝑣𝑖 of this interval, and 
𝜕𝐹

𝜕𝑣𝑖
≥ 0. 

 

SECOND METHOD THAT WE USE IN THIS RESEARCH: DISCRETIZATION 

The centroid and variance – as described by the equations (1) and (2) – are, in effect, functions of infinitely many variables 

𝜇(𝑥) – the values of the membership function at different values 𝑥. However, from the mathematical viewpoint, each integral 
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is the limit of the corresponding integral sums, and the limit means that if we consider a sufficiently dense grid, we get the 

value of this integral with any given accuracy. This is how integrals are computed in a computer in the first place. 

 

From this viewpoint, it makes sense to consider the corresponding integral sums in the formulas (1) and (2):  

 

𝑋 =
∑𝑛

𝑖=1 𝑥𝑖⋅𝜇𝑖⋅Δ𝑥

∑𝑛
𝑖=1 𝜇𝑖⋅Δ𝑥

                                                                                                                                                                         (11) 

 

and  

 

𝑉 =
∑𝑛

𝑖=1 𝑥𝑖
2⋅𝜇𝑖⋅Δ𝑥

∑𝑛
𝑖=1 𝜇𝑖⋅Δ𝑥

− (
∑𝑛

𝑖=1 𝑥𝑖⋅𝜇𝑖⋅Δ𝑥

∑𝑛
𝑖=1 𝜇𝑖⋅Δ𝑥

)
2

.                                                                                                                                            (12) 

 

where we consider grid points 𝑥𝑖 = 𝑥1 + (𝑖 − 1) ⋅ Δ𝑥, and 𝜇𝑖 denotes 𝜇(𝑥𝑖). 

 

LET US APPLY THESE METHODS TO OUR PROBLEM 

Let us start with the problem of computing the range of the centroid: In accordance with the discretization method, the 

value of the centroid can be described by the formula (11). If we divide both numerator and denominator of this formula by 

Δ𝑥, we will get a simplified expression  

 

𝑋 =
∑𝑛

𝑖=1 𝑥𝑖⋅𝜇𝑖

∑𝑛
𝑖=1 𝜇𝑖

.                                                                                                                                                                             (13) 

 

We want to find the minimum and maximum of this function when for each 𝑖, we have 𝜇𝑖 ∈ [ 𝜇 𝑖, 𝜇𝑖], where we similarly 

denoted 𝜇 𝑖 =
d𝑒𝑓

𝜇(𝑥𝑖) and 𝜇𝑖 =
d𝑒𝑓

𝜇(𝑥𝑖). As we have mentioned earlier, to find the minimum and maximum, it is beneficial to 

know the partial derivatives of the function (13) with respect to its variables 𝜇𝑖. Here,  

 

𝜕

𝜕𝜇𝑖
(

∑𝑛
𝑗=1 𝑥𝑗⋅𝜇𝑗

∑𝑛
𝑗=1 𝜇𝑗

) =
𝑥𝑖⋅(∑𝑛

𝑗=1 𝜇𝑗)−∑𝑛
𝑗=1 𝑥𝑗⋅𝜇𝑗

(∑𝑛
𝑗=1 𝜇𝑗)

2 .                                                                                                                                         (14) 

 

This expression can be described as  

 

𝜕𝑋

𝜕𝜇𝑖
= 𝑎 ⋅ 𝑥𝑖 − 𝑏,                                                                                                                                                                        (15) 

 

where we denoted  

 

𝑎 =
d𝑒𝑓 ∑𝑛

𝑗=1 𝜇𝑗

(∑𝑛
𝑗=1 𝜇𝑗)

2 =
1

∑𝑛
𝑗=1 𝜇𝑗

                                                                                                                                                            (16) 
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and  

 

𝑏 =
d𝑒𝑓 ∑𝑛

𝑗=1 𝑥𝑗⋅𝜇𝑗

(∑𝑛
𝑗=1 𝜇𝑗)

2.                                                                                                                                                                          (17) 

 

The values 𝜇𝑗 are non-negative and some of them are positive, so 𝑎 > 0. 

 

Thus, for the values 𝑚1, … , 𝑚𝑛 for which the expression (13) attains its minimum, for each 𝑖:  

    • either the value 𝑚𝑖 is attained inside the corresponding interval [ 𝜇 𝑖, 𝜇𝑖], and 𝑎 ⋅ 𝑥𝑖 − 𝑏 = 0;  

    • or the value 𝑚𝑖 is located at the left endpoint 𝑚𝑖 = 𝜇 𝑖 of this interval, and 𝑎 ⋅ 𝑥𝑖 − 𝑏 ≥ 0;  

    • or the value 𝑚𝑖 is located at the right endpoint 𝑚𝑖 = 𝜇
𝑖
 of this interval, and 𝑎 ⋅ 𝑥𝑖 − 𝑏 ≤ 0.  

 

The equality 𝑎 ⋅ 𝑥𝑖 − 𝑏 = 0 can only be satisfied for one value 𝑥𝑖 = 𝑏/𝑎. For all larger values 𝑥𝑖, we will have 𝑎 ⋅ 𝑥𝑖 − 𝑏 > 0. 

Thus, in this case, the minimum cannot be attained inside the interval, and it cannot be attained at the right endpoint – so it 

must be attained at the left endpoint 𝑚𝑖 = 𝜇 𝑖. 

 

Similarly, for values 𝑥𝑖 which are smaller than 𝑏/𝑎, we have 𝑎 ⋅ 𝑥𝑖 − 𝑏 < 0. Thus, in this case, the minimum cannot be attained 

inside the interval, and it cannot be attained at the left endpoint – so it must be attained at the right endpoint 𝑚𝑖 = 𝜇𝑖. 

 

We do not know the threshold value 𝑥0 =
d𝑒𝑓

𝑏/𝑎, but we can conclude that for the function 𝜇(𝑥) for which the centroid attains 

its minimum, we have 𝜇(𝑥) = 𝜇(𝑥) for all 𝑥 < 𝑥0 and 𝜇(𝑥) = 𝜇(𝑥) for all 𝑥 > 𝑥0. Thus, we arrive at the known algorithm – 

that we described earlier. 

 

For the values 𝑀1, … , 𝑀𝑛 for which the expression (13) attains its maximum, for each 𝑖:   

• either the value 𝑀𝑖 is attained inside the corresponding interval [ 𝜇 𝑖, 𝜇𝑖], and 𝑎 ⋅ 𝑥𝑖 − 𝑏 = 0;  

• or the value 𝑀𝑖 is located at the left endpoint 𝑀𝑖 = 𝜇 𝑖 of this interval, and 𝑎 ⋅ 𝑥𝑖 − 𝑏 ≤ 0;  

• or the value 𝑀𝑖 is located at the right endpoint 𝑀𝑖 = 𝜇
𝑖
 of this interval, and 𝑎 ⋅ 𝑥𝑖 − 𝑏 ≥ 0.  

 

The equality 𝑎 ⋅ 𝑥𝑖 − 𝑏 = 0 can only be satisfied for one value 𝑥𝑖 = 𝑏/𝑎. For all larger values 𝑥𝑖, we will have 𝑎 ⋅ 𝑥𝑖 − 𝑏 > 0. 

Thus, in this case, the minimum cannot be attained inside the interval, and it cannot be attained at the left endpoint – so it must 

be attained at the right endpoint 𝑀𝑖 = 𝜇𝑖. 

 

Similarly, for values 𝑥𝑖 which are smaller than 𝑏/𝑎, we have 𝑎 ⋅ 𝑥𝑖 − 𝑏 < 0. Thus, in this case, the minimum cannot be attained 

inside the interval, and it cannot be attained at the right endpoint – so it must be attained at the left endpoint 𝑀𝑖 = 𝜇 𝑖. 
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We do not know the threshold value 𝑥0 =
d𝑒𝑓

𝑏/𝑎, but we can conclude that for the function 𝜇(𝑥) for which the centroid attains 

its minimum, we have 𝜇(𝑥) = 𝜇(𝑥) for all 𝑥 < 𝑥0 and 𝜇(𝑥) = 𝜇(𝑥) for all 𝑥 > 𝑥0. Thus, for computing 𝑋, we also arrive at 

the above algorithm.  

 

Comment. Instead of approximating the integrals by integral sums, we could use  variational calculus – an extension of calculus 

specifically intended for the situations when we want to find a function that minimizes or maximizes a given objective function; 

[20-23].  

 

Let us apply these methods to computing the variance: Let us now apply these methods to computing the variance (1), 

which, in terms of integral sums, takes the form (12). If we divide both the numerator and denominator of both fractions in this 

formula by Δ𝑥, we get a simplified expression  

 

𝑉 =
∑𝑛

𝑖=1 𝑥𝑖
2⋅𝜇𝑖

∑𝑛
𝑖=1 𝜇𝑖

− (
∑𝑛

𝑖=1 𝑥𝑖⋅𝜇𝑖

∑𝑛
𝑖=1 𝜇𝑖

)
2

.                                                                                                                                                     (18) 

 

Here,  

 

𝜕𝑉

𝜕𝜇𝑖
=

𝑥𝑖
2⋅(∑𝑛

𝑗=1 𝜇𝑗)−∑𝑛
𝑗=1 𝑥𝑗

2⋅𝜇𝑗

(∑𝑛
𝑗=1 𝜇𝑗)

2 − 2 ⋅ (
∑𝑛

𝑗=1 𝑥𝑗⋅𝜇𝑗

∑𝑛
𝑗=1 𝜇𝑗

) ⋅
𝑥𝑖⋅(∑𝑛

𝑗=1 𝜇𝑗)−∑𝑛
𝑗=1 𝑥𝑗⋅𝜇𝑗

(∑𝑛
𝑗=1 𝜇𝑖)

2 .                                                                                          (19)                                                                                                               

 

Thus, the dependence of this derivative on 𝑥𝑖 has the form  

 

𝜕𝑉

𝜕𝜇𝑖
= 𝑎 ⋅ 𝑥𝑖

2 + 𝑏 ⋅ 𝑥𝑖 + 𝑐,                                                                                                                                                           (20) 

 

where  

 

𝑎 =
d𝑒𝑓 ∑𝑛

𝑗=1 𝜇𝑗

(∑𝑛
𝑗=1 𝜇𝑗)

2 =
1

∑𝑛
𝑗=1 𝜇𝑗

.                                                                                                                                                           (21) 

 

Similar to the case of the centroid, this value 𝑎 is positive. So, the quadratic expression (20) is either always positive, or has 

two roots 𝑟1 ≤ 𝑟2, so that this expression is positive for 𝑥 < 𝑟1 and 𝑥 > 𝑟2 and negative for 𝑟1 < 𝑥 < 𝑟2. The first case can be 

described as a particular case of the second case if we take 𝑟1 = 𝑟2. 

 

Thus, for the values 𝑚1, … , 𝑚𝑛 for which the expression (18) attains its minimum, for each 𝑖:   

• either the value 𝑚𝑖 is attained inside the corresponding interval [ 𝜇 𝑖, 𝜇𝑖], and 𝑎 ⋅ 𝑥𝑖
2 + 𝑏 ⋅ 𝑥𝑖 + 𝑐 = 0;  

• or the value 𝑚𝑖 is located at the left endpoint 𝑚𝑖 = 𝜇 𝑖 of this interval, and 𝑎 ⋅ 𝑥𝑖
2 + 𝑏 ⋅ 𝑥𝑖 + 𝑐 ≥ 0;  

• or the value 𝑚𝑖 is located at the right endpoint 𝑚𝑖 = 𝜇
𝑖
 of this interval, and 𝑎 ⋅ 𝑥𝑖

2 + 𝑏 ⋅ 𝑥𝑖 + 𝑐 ≤ 0.  
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The equality 𝑎 ⋅ 𝑥𝑖
2 + 𝑏 ⋅ 𝑥𝑖 + 𝑐 = 0 can only be satisfied for at most two values 𝑟1 and 𝑟2. For values 𝑥𝑖 < 𝑟1 and 𝑥𝑖 > 𝑟2, we 

will have 𝑎 ⋅ 𝑥𝑖
2 + 𝑏 ⋅ 𝑥𝑖 + 𝑐 > 0. Thus, in this case, the minimum cannot be attained inside the interval, and it cannot be 

attained at the right endpoint – so it must be attained at the left endpoint 𝑚𝑖 = 𝜇 𝑖. 

 

Similarly, for values 𝑥𝑖 which are between 𝑟1 and 𝑟2, we have 𝑎 ⋅ 𝑥𝑖
2 + 𝑏 ⋅ 𝑥𝑖 + 𝑐 < 0. Thus, in this case, the minimum cannot 

be attained inside the interval, and it cannot be attained at the left endpoint – so it must be attained at the right endpoint 𝑚𝑖 =

𝜇
𝑖
. 

 

We do not know the threshold values 𝑟1 and 𝑟2, but we can conclude that for the function 𝜇(𝑥) for which the variance attains 

its minimum, we have 𝜇(𝑥) = 𝜇(𝑥) for all 𝑥 < 𝑟1 and 𝑥 > 𝑟2, and we have 𝜇(𝑥) = 𝜇(𝑥) for all 𝑥 between 𝑟1 and 𝑟2.  

 

Comment. This makes sense: to minimize the variance, we must assign the smallest possible weight to values far away from 

the centroid, and the largest possible weight to the values close to the centroid.  

 

Similarly, for the values 𝑀1, … , 𝑀𝑛 for which the expression (18) attains its maximum, for each 𝑖:   

    • either the value 𝑀𝑖 is attained inside the corresponding interval [ 𝜇 𝑖, 𝜇𝑖], and 𝑎 ⋅ 𝑥𝑖
2 + 𝑏 ⋅ 𝑥𝑖 + 𝑐 = 0;  

    • or the value 𝑀𝑖 is located at the left endpoint 𝑚𝑖 = 𝜇 𝑖 of this interval, and 𝑎 ⋅ 𝑥𝑖
2 + 𝑏 ⋅ 𝑥𝑖 + 𝑐 ≤ 0;  

    • or the value 𝑀𝑖 is located at the right endpoint 𝑚𝑖 = 𝜇𝑖 of this interval, and 𝑎 ⋅ 𝑥𝑖
2 + 𝑏 ⋅ 𝑥𝑖 + 𝑐 ≥ 0.  

 

The equality 𝑎 ⋅ 𝑥𝑖
2 + 𝑏 ⋅ 𝑥𝑖 + 𝑐 = 0 can only be satisfied for at most two values 𝑟1 and 𝑟2. For values 𝑥𝑖 < 𝑟1 and 𝑥𝑖 > 𝑟2, we 

will have 𝑎 ⋅ 𝑥𝑖
2 + 𝑏 ⋅ 𝑥𝑖 + 𝑐 > 0. Thus, in this case, the maximum cannot be attained inside the interval, and it cannot be 

attained at the left endpoint – so it must be attained at the right endpoint 𝑀𝑖 = 𝜇𝑖. 

 

Similarly, for values 𝑥𝑖 which are between 𝑟1 and 𝑟2, we have 𝑎 ⋅ 𝑥𝑖
2 + 𝑏 ⋅ 𝑥𝑖 + 𝑐 < 0. Thus, in this case, the maximum cannot 

be attained inside the interval, and it cannot be attained at the right endpoint – so it must be attained at the left endpoint 𝑚𝑖 =

𝜇 𝑖. 

 

We do not know the threshold values 𝑟1 and 𝑟2, but we can conclude that for the function 𝜇(𝑥) for which the variance attains 

its minimum, we have 𝜇(𝑥) = 𝜇(𝑥) for all 𝑥 < 𝑟1 and 𝑥 > 𝑟2, and we have 𝜇(𝑥) = 𝜇(𝑥) for all 𝑥 between 𝑟1 and 𝑟2.  

 

Comment. This also makes sense: to maximize the variance, we must assign the largest possible weight to values far away from 

the centroid, and the smallest possible weight to the values close to the centroid.  

Thus, we arrive at the following algorithms. 

 

RESULTS 
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Algorithm for computing 𝑽. : To find the smallest possible value of the variance 𝑉, it is sufficient to find the value 𝑟1 ≤ 𝑟2 

for which the value 𝑉(𝑚𝑟1,𝑟2
) is the smallest, where the function 𝑚𝑟1,𝑟2

(𝑥) is defined as follows:   

    • for 𝑥 < 𝑟1 and for 𝑥 > 𝑟2, we have 𝑚𝑟1,𝑟2
(𝑥) = 𝜇(𝑥), and  

    • for 𝑥 ∈ (𝑟1, 𝑟2), we have 𝑚𝑟1,𝑟2
(𝑥) = 𝜇(𝑥).  

 

This reduces the original difficult-to-optimize problem of minimizing the centroid value to a much simpler problem of 

optimizing a function of two variables, a problem for which many efficient algorithms exist.  

 

Algorithm for computing 𝑽. :To find the largest possible value of the variance 𝑉, it is sufficient to find the value 𝑟1 ≤ 𝑟2 for 

which the value 𝑉(𝑀𝑟1,𝑟2
) is the largest, where the function 𝑀𝑟1,𝑟2

(𝑥) is defined as follows:  

  

    • for 𝑥 < 𝑟1 and for 𝑥 > 𝑟2, we have 𝑀𝑟1,𝑟2
(𝑥) = 𝜇(𝑥), and  

    • for 𝑥 ∈ (𝑟1, 𝑟2), we have 𝑀𝑟1,𝑟2
(𝑥) = 𝜇(𝑥).  

 

This reduces the original difficult-to-optimize problem of maximizing the centroid value to a much simpler problem of 

optimizing a function of two variables, a problem for which many efficient algorithms exist.  

 

DISCUSSION  

So, we indeed designed efficient algorithms for computing the range [ 𝑉, 𝑉 ] of the variance for interval-valued fuzzy sets.  

 

Comment. The range of the possible values of a random variable is often described by an interval [𝑋 − 𝑘 ⋅ 𝜎, 𝑋 + 𝑘 ⋅ 𝜎], for 

some value 𝑘. One can see that in the fuzzy case, the derivatives of both expressions 𝑋 − 𝑘 ⋅ 𝜎 and 𝑋 + 𝑘 ⋅ 𝜎 with respect to 𝜇𝐼 

are also quadratic in 𝑥𝑖, and so, similar efficient algorithms can be used to compute the ranges of possible values of each of 

these expressions. 

 

CONCLUSIONS 

To gauge the accuracy of the fuzzy control recommendations, it is useful to know the variance 𝑉 of the corresponding fuzzy 

set. In the practically important interval-valued fuzzy case, instead of a single value of the variance, we have a range [ 𝑉, 𝑉 ] of 

its possible values. In this paper, we provide an efficient algorithm for computing this range. 
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