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Abstract: One of the most effective image processing techniques is the use of convolutional neural1

networks that use convolutional layers. In each such layer, the value of the layer’s output signal2

at each point is a combination of the layer’s input signals corresponding to several neighboring3

points. To improve the accuracy, researchers have developed a version of this technique, in which4

only data from some of the neighboring points is processed. It turns out that the most efficient case5

– called dilated convolution – is when we select the neighboring points whose differences in both6

coordinates are divisible by some constant `. In this paper, we explain this empirical efficiency7

by proving that for all reasonable optimality criteria, dilated convolution is indeed better than8

possible alternatives.9

Keywords: convolutional neural networks; dilated neural networks; optimality10

1. Introduction11

Convolutional layers: input and output. At present, one of the most efficient tech-12

niques in image processing and in other areas is a convolutional neural network; see, e.g.,13

[1]. Convolutional neural networks include special types of layers that perform linear14

transformations.15

Each such layer is characterized by integer-values parameters X ≤ X, Y ≤ Y,16

din ≥ 1, and dout ≥ 1; then:17

• the input to this layer consists of the values Fd′(x′, y′), where d′, x′, and y′ are18

integers for which X ≤ x′ ≤ X, Y ≤ y′ ≤ Y, and 1 ≤ d′ ≤ din; and19

• the output of this layer consists of the values Gd(x, y), where d, x, and y are integers20

for which X ≤ x ≤ X, Y ≤ y ≤ Y, and 1 ≤ d ≤ dout.21

Convolutional layer: transformation. A general linear transformation takes the form

Gd(x, y) =
din

∑
d′=1

 X

∑
x′=X

Y

∑
y′=Y

Kd(x, x′, y, y′, d′) · Fd′(x′, y′)

, (1)

for some coefficients Kd(x, x′, y, y′, d′).22

Transformations performed by a convolutional layer are a specific case of such23

generic linear transformations, where the following two restrictions are imposed:24

• first, each values Gd(x, y) depends only on the values Fd′(x′, y′) for which both25

differences |x− x′| and |y− y′| do not exceed some fixed integer L, and26

• the coefficients Kd(x, x′, y, y′, d′) depend only on the differences x− x′ and y− y′:

Kd(x, x′, y, y′, d′) = kd(x− x′, y− y′, d′) (2)

for some coefficients kd(i, j, d′) defined for all pairs (i, j) for which |i|, |j| ≤ L.27
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The values kd(i, j, d′) are known as a filter.28

The resulting linear transformation takes the form

Gd(x, y) =
din

∑
d′=1

(
∑

−L≤i,j≤L
kd(i, j, d′) · Fd′(x− i, y− j)

)
. (3)

Thus, the output Gd(x, y) of a convolutional layer corresponding to the point (x, y)29

is determined by the values Fd′(x− i, y− j) of the input to this layer at points (x− i, y− j)30

corresponding to |i| ≤ L and |j| ≤ L. This is illustrated by Fig. 1, where, for L = 1 and31

for a point (x, y) marked by an asterisk, we show all the points (x′, y′) = (x0 − i, y0 − j)32

that determine the values Gd(x, y). For convenience, points (x′, y′) that do not affect the33

values Gd(x, y), are marked by zeros.34
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Figure 1: Convolution filter: case of L = 138

For L = 2, a similar picture has the following form:39
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Figure 2: Convolution filter: case of L = 243

Sparse filters and dilated convolution. Originally, convolutional neural networks used44

filters in which all the values kd(i, j, d′) for |i|, |j| ≤ L can be non-zero. It turned out,45

however, that we can achieve a better accuracy if we consider sparse filters, i.e., filters46

in which, for some pairs (i, j) with |i|, |j| ≤ L, all the values kd(i, j, d′) are fixed at 0; see,47

e.g., [3,5,6].48

In Fig. 3, we show an example of such a situation, when L = 2 and only values49

kd(i, j, d′) for which both i and j are even are allowed to be non-zero.50
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Figure 3. Case when L = 2 and only values kd(i, j, d′) with even i and j can be no-zero57

In general, it turned out that such a restriction works best if we only allow kd(i, j, d′) 6=
0 for pairs (i, j) which are divisible by some integer `, i.e., if we take

Gd(x, y) =
d=din

∑
d′=1

(
∑

−L≤i,j≤L: i/`∈Z, j/`∈Z
kd(i, j, d′) · Fd′(x− i, y− j)

)
. (4)

In this case, the layer’s output signal Gd(x, y) can be written in the following equivalent
form:

Gd(x, y) =
din

∑
d′=1

 ∑
−L̃≤ĩ, j̃≤L̃

k̃d

(
ĩ, j̃, d′

)
· Fd′

(
x− ` · ĩ, y− ` · j̃

), (5)

where we denoted L̃ def
= L/`, ĩ def

= i/`, j̃ def
= j/`, and k̃d

(
ĩ, j̃, d′

)
def
= k

(
` · ĩ, ` · j̃, d′

)
.58

The resulting networks are known as dilated convolutional neural networks, since59

skipping some points (i, j) in the description of the filter is kind of equivalent to extend-60

ing (dilating) the distance between the remaining points; see, e.g., [3,5,6].61

Empirical fact that needs explanation. In principle, we could select other points (i, j)62

at which the filter can be non-zero. For example, we could select points for which j is63

even, but i can be any integer:64
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Figure 4. Case when L = 2 and only values kd(i, j, d′) with even j can be non-zero71
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Alternatively, for L = 2, as points (i, j) at which kd(i, j, d′) can be non-zero, we72

could select the points (0, 0), (0,±1), (±1, 0), and (±2,±2), see Fig. 5.73
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Figure 5. A possible selection of points (i, j) for which kd(i, j, d′) can be no-zero80

However, empirical evidence shows that the selection corresponding to dilated81

convolution – when we select points for which i and j are both divisible by some integer82

` – works the best [3,5,6].83

To the best of our knowledge, there is no theoretical explanation for this empirical84

result – that dilated convolution leads to better results that selecting other sets of non-85

zero-valued points (i, j). The main objective of this paper is to provide such an explanation.86

87

Comment. Let us emphasize that the only objective of this paper is to explain this em-88

pirical fact, we are not yet at a stage where we can propose a new method or even any89

improvements to the known methods.90

2. Analysis of the Problem91

Let us reformulate this situation in geometric terms: case of traditional convolution.
In the original convolution formula (1), to find the values Gd(x, y) the layer’s output
signal at a point (x, y), we need to know the values Fd′(x′, y′) the layer’s input signal
at all the points (x′, y′) of the type (x− i, y− j) for |i|, |j| ≤ L. We can reformulate it by
saying that we need to know the values Fd′(x′, y′) at all the points (x′, y′) at which the
`∞ distance

d∞((x, y), (x′, y′)) def
= max(|x− x′|, |y− y′|), (6)

does not exceed L:

Gd(x, y) =
din

∑
d′=1

 ∑
(x′ ,y′)∈D: d∞((x,y),(x′ ,y′))≤L

kd(x− x′, y− y′, d′) · Fd′(x′, y′)

, (7)

where we denoted
D def

= (Z∩ [X, X])× (Z∩ [Y, Y]). (8)

That we use, in this formula, the bounded subset D of the “grid" Z×Z and not the

whole set S̃ def
= Z× Z only matters at the border of the domain D. So, to simplify our



Version June 13, 2021 submitted to Entropy 5 of 15

formulas, we can follow the usual tradition (see, e.g., [5]) and simply use the whole set
S̃ = Z×Z instead of the bounded set D:

Gd(x, y) =
din

∑
d′=1

 ∑
(x′ ,y′)∈S̃: d∞((x,y),(x′ ,y′))≤L

kd(x− x′, y− y′, d′) · Fd′(x′, y′)

. (9)

92

Comment. Note that the set S̃ is potentially infinite. What makes the set of all the points93

(x′, y′) – that affects the values Gd(x, y) – finite is the restriction d∞((x, y), (x′, y′)) ≤ L,94

whose meaning is that such points (x′, y′) should belong to the corresponding neighbor-95

hood of the point (x, y).96

Case of dilated convolution. The dilated convolution can be described in a similar way.
Namely, we can describe the formula (4) as

Gd(x, y) =
din

∑
d′=1

 ∑
(x′ ,y′)∈S`(x,y): d∞((x,y),(x′ ,y′))≤L

kd(x− x′, y− y′, d′) · Fd′(x′, y′)

, (10)

where S`(x, y) denotes the set of all the points (x′, y′) for which both differences x− x′

and y− y′ are divisible by `:

S`(x, y) def
= {(x′, y′) : x′ ≡ x mod `, y′ ≡ y mod `}. (11)

Note that in this representation of dilated convolution, while we have several dif-97

ferent sets S`(x, y) for different points (x, y), there is only one filter kd(x− x′, y− y′, d′),98

namely the same filter that was used in the original representation (4). So, in this new99

representation, we have exactly as many parameters as before.100

The main difference between this formula and the formula (9) is that, in contrast to101

the usual convolution (9), where the same set S̃ = Z×Z could be used for all the points102

(x, y), here, in general, we may need different sets S`(x, y) for different points (x, y).103

For example, if ` = 2, then we need four such sets:104

• for points (x, y) for which both x and y are even, the formula (10) holds for

S2(0, 0) = S2(0, 2) = . . . = S(`=2)
0,0

def
= {(x, y) ∈ Z×Z : x and y are even}; (12)

• for points (x, y) for which x is even but y is odd, the formula (10) holds for105

S2(0, 1) = S2(0, 3) = . . . = S(`=2)
0,1

def
= {(x, y) ∈ Z×Z : x is even and y is odd}; (13)

• for points (x, y) for which x is odd but y is even, the formula (10) holds for106

S2(1, 0) = S2(1, 2) = . . . = S(`=2)
1,0

def
= {(x, y) ∈ Z×Z : x is odd and y is even}; (14)

• finally, for points (x, y) for which x and y are both odd, the formula (10) holds for

S2(0, 1) = S2(0, 3) = . . . = S(`=2)
1,1

def
= {(x, y) ∈ Z×Z : x and y are odd}. (15)

In this case, instead of the single set S1(x, y) = S̃ (s in the case of the traditional convolu-
tion), we have a set of such sets

F =
{

S(`=2)
0,0 , S(`=2)

0,1 , S(`=2)
1,0 , S(`=2)

1,1

}
. (16)
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To avoid confusion, we will call subsets of the original “grid" Z×Z sets, while the set
of such sets will be called a family. In these terms, the formula (10) can be described as
follows:

Gd(x, y) =

din

∑
d′=1

 ∑
(x′ ,y′)∈SF (x,y): d∞((x,y),(x′ ,y′))≤L

kd(x− x′, y− y′, d′) · Fd′(x′, y′)

, (17)

where SF (x, y) denotes the set S ∈ F from the family F that contains the point (x, y):

(x, y) ∈ SF (x, y) and SF (x, y) ∈ F . (18)

In this representation, all four sets S from the family F are infinite – just like the set107

S̃ corresponding to the traditional convolution is infinite. Similarly to the traditional108

convolution, what makes the set of all the points (x′, y′) – that affects the values Gr(x, y)109

– finite is the restriction d∞((x, y), (x′, y′)) ≤ L, whose meaning is that such points (x′, y′)110

should belong to the corresponding neighborhood of the point (x, y).111

Fig. 6 describes which of the four sets S ∈ F corresponds to each point (x, y) from112

the “grid” Z×Z:113

. . . . . . . . . . . . . . .

. . . S(`=2)
1,1 S(`=2)

0,1 S(`=2)
1,1 . . .

. . . S(`=2)
1,0 S(`=2)

0,0 S(`=2)
1,0 . . .

. . . S(`=2)
1,1 S(`=2)

0,1 S(`=2)
1,1 . . .

. . . . . . . . . . . . . . .

114

115

116

Figure 6. Sets SF (x, y) corresponding to different points (x, y)117

– for filters presented in Figure 3118

For ` = 3, we can get a similar reformulation, with the family

F =
{

S(`=3)
0,0 , S(`=3)

0,1 , S(`=3)
0,2 , S(`=3)

1,0 , S(`=3)
1,1 , S(`=3)

1,2 , S(`=3)
2,0 , S(`=3)

2,1 , S(`=3)
2,2

}
, (19)

where S(`=3)
i,j is the set of all the pairs (x, y) ∈ Z×Z in which both differences x− i and119

y− j are divisible by 3.120

In general, for an arbitrary point (x, y), we should use the set SF = S(`=2)
x mod `, y mod `

.121

122

Other cases. Such a representation is possible not only for dilated convolution. For
example, the above case when we allow arbitrary value i and require the value j to be
even can be described in a similar way, with

F = {S0, S1}, (20)

where:123

• for points (x, y) for which y is even, we take

SF (0, 0) = SF (1, 0) = . . . = S0
def
= {(x, y) ∈ Z×Z : y is even}, (21)

• and for points (x, y) for which y is odd, we take

SF (0, 1) = SF (1, 1) = . . . = S1
def
= {(x, y) ∈ Z×Z : y is odd}. (22)
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In principle, we can also have families that have infinite number of sets; an example of124

such a family will be given below.125

We can also, in principle, consider the situations when we do not require that the126

coefficients kd(x, x′, y, y′, d′) depend only on the differences x− x′ and y− y′. Thus, we127

arrive to the following general description.128

General case. In the general case, we get the following situation:129

• we have a family F of subsets of the “grid” Z×Z;130

• the values Gd(x, y) of the layer’s output signal at a point (x, y) is determined by the131

formula132

Gd(x, y) =
din

∑
d′=1

 ∑
(x′ ,y′)∈SF (x,y): d∞((x,y),(x′ ,y′))≤L

Kd(x, x′, y, y′, d′) · Fd′(x′, y′)

, (23)

for some values Kd(x, x′, y, y′, d′), where SF (x, y) denotes the set S ∈ F from the133

family F that contains the point (x, y).134

For the formula (23) to uniquely determine the values Gd(x, y), we need to make sure135

that the set SF (x, y) is uniquely determined by the point (x, y), i.e., that for each point136

(x, y), the family F contain one and only one set S that contains this point. In other137

words:138

• different sets from the family F must be disjoint, and139

• the union of all the sets S ∈ F must coincide with the whole “grid” Z×Z.140

In mathematical terms, the family F must form a partition of the “grid” Z×Z.141

Comment. To avoid possible confusion, it is worth mentioning that while different sets S142

from the family F are disjoint, this does not preclude the possibility that sets SF (x, y)143

and SF (x′, y′) corresponding to different points (x, y) 6= (x′, y′) can be identical. For144

example, in the description of the traditional convolution, the family F consists of only145

one set F =
{

S̃
}

. In this case, for all points (x, y) and (x′, y′), we have SF (x, y) =146

SF (x′, y′) = S̃.147

In terms of sets corresponding to different points, disjointness means that if the148

sets SF (x, y) and SF (x′, y′) are different, then these sets must be disjoint: SF (x, y) ∩149

SF (x′, y′) = ∅.150

We do not a priori require shift-invariance. Please note that we do not a priori require151

that the sets SF (x, y) and SF (x0, y0) corresponding to two different points (x, y) and152

(x0, y0) should be obtained from each other by shift – this property is known as shift153

invariance and is satisfied both for the usual convolution and for the dilated convolution.154

It should be emphasized, however, that we will show that this shift-invariance155

property holds for the optimal arrangement.156

Let us avoid the degenerate case. From the purely mathematical viewpoint, we can157

have a partition of the “grid” Z× Z into one-point sets {(x, y)}. This is an example158

when the family F has infinitely many subsets.159

In this case, no matter what value L we choose, the formula (23) implies that the160

values Gd(x, y) of the layer’s output signal at a point (x, y) is determined only by the161

values Fd′(x, y) of the layer’s input at this same point. This is equivalent to using a162

convolution with L = 0; such a convolution is known as the 1-by-1 convolution.163

While such convolution is often useful, in this case, for each point (x, y), there is164

only one point (x′, y′) = (x, y), so it is not possible to select only some of the points165

(x′, y′) – which is the whole idea of dilation. Since in this paper, we study dilation, we166

will therefore avoid this 1-by-1 situation and additionally require that at least one set167

from the family F should contain more than one element.168

What we plan to do. We will consider all possible families F that form a partition of169

the “grid” Z× Z, and we will show that for all optimality criteria that satisfy some170
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reasonable conditions, the optimal family is either the family of sets corresponding to171

the dilated convolution – or a natural modification of this family.172

Let us describe what we mean by an optimality criteria.173

What does “optimal” mean? In our case, we select between different families of sets F ,174

F ′, . . . In general, we select between alternatives a, b, etc. Out of all possible alternatives,175

we want to select an optimal one. What does “optimal” mean?176

In many cases, “optimal” is easy to describe:177

• we have an objective function f (a) that assigns a numerical value to each alternative178

a – e.g., the average approximation error of the numerical method a for solving a179

system of differential equations, and180

• optimal means we select an alternative for which the value of this objective function181

is the smallest possible (or, for some objective functions, the largest possible).182

However, this is not the only possible way to describe optimality.183

For example, if we are minimizing the average approximation error, and there184

are several different numerical methods with the exact same smallest value of average185

approximation error, then we can use this non-uniqueness to select, e.g., the method with186

the shortest average computation time. In this case, we have, in effect, a more complex187

preference relation between alternatives than in the case when decision is made based188

solely on the value of the objective function. Specifically, in this case, an alternative b is189

better than the alternative a – we will denote it by a < b – if:190

• either we have f (b) < f (a),191

• or we have f (a) = f (b) and g(b) < g(a).192

If this still leaves several alternatives which are equally good, then we can optimize193

something else and thus, have an even more complex optimality criterion.194

In general, having an optimality criterion means that we are able to compare pairs195

of alternatives – at least some such pairs – and conclude that:196

• for some of these pairs, we have a < b,197

• for some of these pairs, we have b < a, and198

• for some others pairs, we conclude that alternatives a and b are, from our viewpoint,199

of equal value; we will denote this by a ∼ b.200

Of course, these relations must satisfy some reasonable properties. For example, if b is201

better than a, and c is better than b, then c should be better than a; in mathematical terms,202

the relation < must be transitive.203

What we must have is some alternative which is better than or equivalent to all204

others – otherwise, the optimization problem has no solutions. It also makes sense to205

require that there is only one such optimal alternative – indeed, as we have mentioned, if206

there are several equally good optimal alternatives, this means that the original optimal-207

ity criterion is not final, that we can use this non-uniqueness to optimize something else,208

i.e., in effect, to modify the original criterion into a final (or at least “more final”) one.209

Invariance. There is an additional natural requirement for possible optimality criteria,210

which is related to the fact that the original “grid" Z× Z has lots of symmetries, i.e.,211

transformations that transform this “grid” into itself.212

For example, if we change the starting point of the coordinate system to a new213

point (x0, y0), then a point that originally had coordinates (x, y) now has coordinates214

(x− x0, y− y0). It makes sense to require that the relative quality of two different families215

F and F ′ will not change if we simply change the starting point.216

Similarly, we can change the direction of the x-axis, then a point (x, y) becomes217

(−x, y). If we change the direction of the y-axis, we get a transformation (x, y)→ (x,−y).218

Finally, we can rename the coordinates: what was x will become y and vice versa; this219

corresponds to the transformation (x, y)→ (y, x). Such transformations should also not220

affect the relative quality of different families.221
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Comment. Please note that we are not requiring that the family F of sets be shift-invariant,222

what we require is that the optimality criterion is shift-invariant.223

Let us explain why, in our opinion, it makes sense to require that the optimality224

criterion is shift-invariance – as well as has other invariance properties. Indeed, let us225

consider any usual optimality criterion such as accuracy of classification, robustness to226

noise, etc. What each criterion means is, e.g., the overall classification accuracy over the227

set S of all possible cat and not-a-cat images I ∈ S . We want this method to correctly228

classify images into cats and not-cats, whether these images are centered or somewhat229

shifted. Thus, to adequately compare different methods, we should test these methods230

on a set S of images that includes both original and shifted images.231

Here:232

• if we shift each image I from the set S by the same shift (x0, y0), i.e., replace each233

image I ∈ S by a shifted image I′ = Tx0,y0(I) for which I′(x, y) = I(x− x0, y− y0),234

• then, we should get, in effect, the exact same set of images:

Tx0,y0(S)
def
= {T(x0, y0)(I) : I ∈ S} ≈ S . (24)

The only difference between these two sets of images may be on the few images where
the cat is right at the image’s boundary; in this paper, we will ignore this difference
– just like we ignored the bounded-ness in the previous text. In this ignoring-bounds
approximation, we conclude that

Tx0,y0(S) = {T(x0, y0)(I) : I ∈ S} = S . (25)

How does shift of the original image affect the input signals to the following235

convolution layers? In between the very first input layer and the following convolution236

layers, we may have (and usually do have) layers that perform “compression” of the237

(x, y) part – i.e., that transform:238

• values corresponding to several points (x, y)239

• into values corresponding to a single new point (x′, y′).240

In general, the (x, y)-shift of the original data corresponds to a shift of the transformed241

data – but by smaller shift values. For example, if data corresponding to each new242

(x, y)-point comes from data from four different “pre-compression” points, then the shift243

by (x0, y0) in the pre-(x, y)-compression layer corresponds to a shift of the convolution244

layer input by (x0/2, y0/2).245

Since the set of input images should not change if we apply a shift, we can conclude
that for each convolution layer, the set of the corresponding inputs to this layer should
also not change if we shift all these inputs, i.e., if we replace each input Fd(x, y) with a
shifted input

F′d(x, y) def
= Fd(x− x0, y− y0) (26)

for some shift (x0, y0).246

The set of inputs on which we compare different methods does not change when
we apply a shift. So, if one method was better when we processed original inputs, it
should still be better if we process shifted inputs – since the resulting set of inputs is the
same. In other words, the quality (e.g., accuracy) QF (S) of a method corresponding
to the family F , when gauged by the set of inputs corresponding to original images
should be the same as this method’s quality QF (Tx0,y0(S)) on the set

Tx0,y0(S) = {Tx0,y0(Fd) : Fd ∈ S} (27)

of all the inputs obtained from the original set S by this shift – since these two sets of247

inputs are, in effect, the same set: Tx0,y0(S) = S . Thus, QF (Tx0,y0(S)) = QF (S).248
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But, as one can see, shifting all the inputs is equivalent to shifting all the sets
from the family F . Indeed, if we apply the formula (23) to the shifted layer’s input

F′d(x, y) def
= Fd(x− x0, y− y0), we get

Gd(x, y) =

din

∑
d′=1

 ∑
(x′ ,y′)∈SF (x,y): d∞((x,y),(x′ ,y′))≤L

Kd(x, x′, y, y′, d′) · Fd′(x′ − x0, y′ − y0)

, (28)

i.e., in terms of the shifted coordinates X def
= x− x0 and Y def

= y− x0 for which x = X + x0
and y = Y + y0, we get – taking into account that the distance d∞ does change with shift
– that:

Gd(X, Y) =

din

∑
d′=1

 ∑
C′ : d∞((X,Y),(X′ ,Y′))≤L

K′d(X, X′, Y, Y′, d′) · Fd′(x′ − x0, y′ − y0)

, (29)

where we denoted

K′d(X, X′, Y, Y′, d′) def
= Kd(X + x0, X′ + x0, Y + y0, Y′ + y0), (30)

and where C′ denotes the condition (X′ + x0, Y′ + y0) ∈ SF (X + x0, Y + y0).249

In terms of the family F , the main difference between the formulas (23) and (29) is
that instead of the condition (x′, y′) ∈ SF (x, y), we now have a new condition

C′ ⇔ (X′ + x0, Y′ + y0) ∈ SF (X + x0, Y + y0), (31)

i.e., equivalently, (X′, Y′) ∈ SF (X + x0, Y + y0)− (x0, y0). It is easy to check that this250

new condition is equivalent to (Y′, Y′) ∈ SF ′(X, Y), where the new family F ′ is obtained251

by shifting sets from the original family F .252

So:253

• the relative quality of two families does not change if we shift all the layer’s inputs;254

• however, shifting all the layer’s inputs is equivalent to shifting all the sets from the255

family F .256

Thus, the relative quality of two families does not change if we shift both families. In257

other words, a reasonable optimality criterion – that describes which family is better –258

should be invariant with respect to shifts.259

Similarly, we can argue that a reasonable optimality criterion should not change if260

we rename x- and y-axes, etc.261

We are ready. Now, we are ready for the precise formulation of the problem.262

3. Definitions and the Main Result263

Definition 1. By a family, we mean a family of non-empty subsets of the “grid” Z×Z, a family264

in which:265

• all sets from this family are disjoint, and266

• at least one set from this family has more than one element.267

Terminological comment. To avoid possible misunderstandings, let us emphasize that here,268

we consider several levels of sets, and to avoid confusion, we use different terms for sets269

from different levels:270

• first, we consider points (x, y) ∈ Z×Z;271

• second, we consider sets of points S ⊆ Z×Z; we call them simply sets;272

• third, we consider sets of sets of points F = {S, S′, . . .}; we call them families;273

• finally, we consider the set of all possible families {F ,F ′, . . .}; we call this a class.274
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Comment about the requirements. In the previous text, we argued that for each family275

F , the union of all its sets ∪{S : S ∈ F} should coincide with the whole “grid” Z×Z.276

However, in our definition of an alternative, we did not impose this requirement. We277

omitted this requirement to make our result stronger – since, as we see from the following278

Proposition, this requirement actually follows from all the other requirements.279

Definition 2. By an optimality criterion, we mean a pair of relations (<,∼) on the class of all280

possible families that satisfy the following conditions:281

• if F < F ′ and F ′ < F ′′, then F < F ′′;282

• if F < F ′ and F ′ ∼ F ′′, then F < F ′′;283

• if F ∼ F ′ and F ′ < F ′′, then F < F ′′;284

• if F ∼ F ′ and F ′ ∼ F ′′, then F ′ ∼ F ′′;285

• we have F ∼ F for all F ; and286

• if F < F ′, then we cannot have F ∼ F ′.287

Comment. The pair of relations (<,∼) between families of subsets forms what is called a288

pre-order or quasi-order. This notion is more general than partial order, since, in contrast289

to the definition of the partial order, we do not require that if a ≤ b and b ≤ a, then a = b:290

in principle, we can have a ∼ b for some a 6= b.291

Definition 3. We say that a family F is optimal with respect to the optimality criterion (<,∼)292

if for every other family F ′, we have either F ′ < F or F ′ ∼ F .293

Definition 4. We say that the optimality criterion is final if there exists exactly one family294

which is optimal with respect to this criterion.295

Definition 5. By a transformation T : Z×Z, we mean one of the following transformations:296

Tx0,y0(x, y) = (x− x0, y− y0), T−+(x, y) = (−x, y), T+−(x, y) = (x,−y), and T↔(x, y) =297

(y, x).298

Definition 6. For each family F and for each transformation T, by the result T(F ) of applying299

the transformation T to the family F , we mean the family T(F ) = {T(S) : S ∈ F}, where, for300

any set S, T(S) def
= {T(x, y) : (x, y) ∈ S}.301

Definition 7. We say that the optimality criterion is invariant if for all transformations T,302

F < F ′ implies that T(F ) < T(F ′), and F ∼ F ′ implies that T(F ) ∼ T(F ′).303

Proposition. For every final invariant optimality criterion, the optimal family is equal, for some304

integer ` ≥ 1, to one of the following two families:305

• the family of all the sets S`,x0,y0

def
= {(x0 + ` · nx, y0 + ` · ny) : nx, ny ∈ Z} corresponding306

to all possible pairs of integers (x0, y0) for which 0 ≤ x0, y0 < `;307

• the family of all the sets

S′`,x0,y0

def
= {(x0 + ` · nx, y0 + ` · ny) : nx, ny ∈ Z and nx + ny is even}

corresponding to all possible pairs of integers (x0, y0) for which 0 ≤ x0, y0 < `.308

Comments.309

• This proposition takes care of all invariant (nd final) optimality criteria. Thus, it310

should work for all usual criteria based on misclassification rate, time of calculation,311

used memory, or any other used in neural networks: indeed, if one method is better312

than another for images in general, it should remain to be better if we simply shift313

all the images or turn all the images upside down. Images can come as they are, they314

can come upside down, they can come shifted, etc. If for some averaging criterion,315

one method works better for all possible images but another method works better316

for all upside-down versions of these images – which is, in effect, the same class of317

possible images – then from the common sense viewpoint, this would mean that318

something is not right with this criterion.319
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• The first possibly optimal case corresponds to dilated convolution. In the second320

possibly optimal case, the optimal family contains similar but somewhat different321

sets; an example of such a set is given in Fig. 7.322
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Figure 7. A set from the second possibly optimal family326

Thus, this result explains the effectiveness of dilated convolution – and also provides327

us with a new alternative worth trying.328

• The following proof is similar to several proofs presented in [4].329

Proof.330

1◦. Since the optimality criterion is final, there exists exactly one optimal family Fopt.331

Let us first prove that this family is itself invariant, i.e., that T(Fopt) = Fopt for all332

transformations T.333

Indeed, the fact that the family Fopt is optimal means that for every family F , we334

have F < Fopt or F ∼ Fopt. Since this is true for every family F , it is also true for335

every family T−1(F ), where T−1 denotes inverse transformation (i.e., a transformation336

for which T(T−1(x, y)) = (x, y)). Thus, for every family F , we have either T−1(F ) <337

Fopt or T−1(F ) ∼ Fopt. Due to invariance, we have F = T(T−1(F )) < T(Fopt) or338

F ∼ T(Fopt). By definition of optimality, this means that the alternative T(Fopt) is also339

optimal. However, since the optimality criterion is final, there exists exactly one optimal340

family, so T(Fopt) = Fopt.341

The statement is proven.342

2◦. Let us now prove that the optimal family contains a set S′ that, in its turn, contains343

the point (0, 0) and some point (x, y) 6= (0, 0).344

Indeed, by definition of a family, every family – including the optimal family –
contains at least one set S that has at least two points. Let S be any such set from the
optimal family, and let (x0, y0) be any of its points. Then, due to Part 1 of this proof, the

set S′ def
= Tx0,y0(S) also belongs to the optimal family, and this set contains the point

Tx0,y0(x0, y0) = (x0 − x0, y0 − y0) = (0, 0).

Since the set S had at least two different points, the set S′ = Tx0,y0(S) also contains345

at least two different points. Thus, the set S′ must contain a point (x, y) which is different346

from (0, 0).347

The statement is proven.348

3◦. In the following text, by S′, we will mean a set from the optimal family Fopt whose349

existence is proven in Part 2 of this proof: namely, a set that contains the point (0, 0) and350

a point (x, y) 6= (0, 0).351

4◦. Let us prove that if the set S′ contains a point (x, y), then this set also contains the352

points (x,−y), (−x, y), and (y, x).353

Indeed, due to Part 1 of this proof, with the set S′ the optimal family Fopt also354

contains the set T+−(S′). This set contains the point T+−(0, 0) = (0, 0). Thus, the sets S′355
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and T+−(S′) have a common element (0, 0). Since different sets from the optimal family356

must be disjoint, it follows that the sets S′ and T+−(S′) must coincide. The set T+−(S′)357

contains the points (x,−y) for each point (x, y) ∈ S. Since T+−(S′) = S′, this implies358

that for each point (x, y) ∈ S′, we have (x,−y) ∈ T+−(S′) = S′.359

Similarly, we can prove that (−x, y) ∈ S′ and (y, x) ∈ S′. The statement is proven.360

5◦. By combining the two conclusions of Part 4 – that (x,−y) ∈ S′ and that therefore
T−+(x,−y) = (−x,−y) ∈ S′, we conclude that for every point (x, y) ∈ S′, the point

−(x, y) def
= (−x,−y)

is also contained in the set S′.361

6◦. Let us prove that if the set S′ contains two points (x1, y1) and (x2, y2), then it also
contains the point

(x1, y1) + (x2, y2)
def
= (x1 + x2, y1 + y2).

Indeed, due to Part 1 of this proof, the set T−x2,−y2(S
′) also belongs to the optimal

family. This set shares an element

T−x2,−y2(0, 0) = (0− (−x2), 0− (−y2)) = (x2, y2)

with the original set S′. Thus, the set T−x2,−y2(S
′) must coincide with the set S′. Due to

the fact that (x1, y1) ∈ S′, the element

T−x2,−y2(x1, y1) = (x1 − (−x2), y1 − (−y2)) = (x1 + x2, y1 + y2)

belongs to the set Tx1,y1(S
′) = S′. The statement is proven.362

7◦. Let us prove that if the set S′ contains a point (x, y), then, for each integer c, this set
also contains the point

c · (x, y) = (c · x, c · y).

Indeed, if c is positive, this follows from the fact that

(c · x, c · y) = (x, y) + . . . + (x, y) (c times).

When c is negative, then we first use Part 5 and conclude that (−x,−y) ∈ S′, and then363

conclude that the point (|c| · (−x), |c| · (−y)) = (c · x, c · y) is in the set S′.364

8◦. Let us prove that if the set S′ contains points (x1, y1), . . . , (xn, yn), then for all integers
c1, . . . , cn, it also contains their linear combination

c1 · (x1, y1) + . . . + cn · (xn, yn) = (c1 · x1 + . . . + cn · xn, c1 · y1 + . . . + cn · yn).

Indeed, this follows from Parts 6 and 7.365

9◦. The set S′ contains some points which are different from (0, 0), i.e., points for which366

at least one of the integer coordinates is non-zero. According to Parts 4 and 5, we can367

change the signs of both x and y coordinates and still get points from S′. Thus, we can368

always consider points with non-negative coordinates.369

Let d denote the greatest common divisor of all positive values of the coordinates370

of points from S′.371

If a value x appears as an x-coordinate of some point (x, y) ∈ S′, then, due to Part 4,
we have (x,−y) ∈ S′ and thus, due to Part 5,

(x, y) + (x,−y) = (2x, 0) ∈ S′.

Similarly, if a value y appears as a y-coordinate of some point (x, y) ∈ S′, then we get372

(0, 2y) ∈ S′ and thus, due to Part 3, (2y, 0) ∈ S′.373
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It is a known that a common divisor d of the values v1, . . . , vn can be represented as
a linear combination of these values:

d = c1 · v1 + . . . + cn · vn.

For each value vi, we have (2vi, 0) ∈ S′, thus, for

2d = c1 · (2v1) + . . . + cn · (2vn),

by Part 8, we get (2d, 0) ∈ S′. Due to Part 4, we thus have (0, 2d) ∈ S′, and due to Parts374

6 and 7, all points (nx · (2d), ny · (2d)) for integers nx and ny also belong to the set S′.375

If S′ has no other points, then for the set containing (0, 0), we indeed conclude that376

this sets is the same as what we described for dilated convolution, with ` = 2d.377

10◦. What if these are other points in the set S′? Since d is the greatest common divisor378

of all the coordinate values, each of these points has the form (cx · d, cy · d) for some379

integers cx and cy. Since this point is not of the form (nx · (2d), ny · (2d)), this means that380

either cx, or cy is an odd number – or both.381

Let us first consider the case when exactly one of the values cx and cy is odd.
Without losing generality, let us assume that cx is odd, so cx = 2nx + 1 and cy = 2ny for
some integers nx and ny. Due to Part 9, we have (2nx · d, 2ny · d) ∈ S′, so the difference

((2nx + 1) · d, 2ny · d)− (2nx · d, 2ny · d) = (d, 0)

also belongs to the set S′. Thus, similarly to Part 9, we can conclude that for every two382

integers cx and cy, we have (cx · d, cy · d) ∈ S′. So, in this case, S′ coincides, for ` = d,383

with the set corresponding to dilated convolution.384

The only remaining case is when not all points (cx · d, cy · d) belong to the set S′.
This means that for some such point both values cx and cy are odd: cx = 2nx + 1 and
cy = 2ny + 1 for some integers nx and ny. Due to Part 9, we have (2nx · d, 2ny · d) ∈ S′,
so the difference

((2nx + 1) · d, (2ny + 1) · d)− (2nx · d, 2ny · d) = (d, d)

also belongs to the set S′.385

Since, due to Part 9, we have (2nx · d, 2ny · d) ∈ S′ for all nx and ny, we conclude,386

by using Part 5, that ((2nx + 1) · d, (2ny + 1) · d) ∈ S′. So, all pairs for which both387

coordinates are odd multiples of d are in S′. Thus, we get the new case described in the388

Proposition.389

11◦. The previous results were about the sets containing the point (0, 0).390

For all other sets S containing some other point (x0, y0), we get the same result if391

we take into account that the optimal family is invariant, and thus, with the set S, the392

optimal family also contains the set Tx0,y0(S) that contains (0, 0) and is, thus, equal either393

to the family corresponding to dilated convolution or to the new similar family.394

The proposition is proven.395

4. Conclusions and Future Work396

Conclusions. One of the efficient machine learning ideas is the idea of a convolutional397

neural network. Such networks use convolutional layers, in which the layer’s output at398

each point is a combination of the layer’s input corresponding to several neighboring399

points. A reasonable idea is to restrict ourselves to only some of the neighboring points.400

It turns out that out of all such restrictions, the best results are obtained when we only use401

neighboring points for which the differences in both coordinates are divisible by some402

constant `. Networks implementing such restrictions are known as dilated convolutional403

neural networks.404

In this paper, we provide a theoretical explanation for this empirical conclusion.405
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Future work. This paper describes a general abstract result: that for any optimality406

criterion that satisfies some reasonable properties, some dilated convolution is optimal.407

To be practically useful, it is desirable to analyze which dilated convolutions are optimal408

for different practical situations and for specific criteria uses in machine learning, such409

as misclassification rate, time of calculation, used memory, etc. (nd the combination of410

these criteria). It is also desirable to analyze what size neighborhood should we choose411

for different practical situations and for different criteria.412
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