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Fuzzy Techniques, Laplace Indeterminacy
Principle, and Maximum Entropy Approach
Explain Lindy Effect and Help Avoid
Meaningless Infinities in Physics

Julio Urenda, Sean Aguilar, Olga Kosheleva, and Vladik Kreinovich

Abstract In many real-life situations, the only information that we have about some
quantity S is a lower bound T < S. In such a situation, what is a reasonable esti-
mate for S? For example, we know that a company has survived for T years, and
based on this information, we want to predict for how long it will continue surviv-
ing. At first glance, this is a type of a problem to which we can apply the usual
fuzzy methodology – but unfortunately, a straightforward use of this methodology
leads to a counter-intuitive infinite estimate for S. There is an empirical formula for
such estimation – known as Lindy Effect and first proposed by Benoit Mandelbrot
– according to which the appropriate estimate for S is proportional to T : S = c ·T ,
where, with some confidence, the constant c is equal to 1. In this paper, we show
that a deeper analysis of the situation enables fuzzy methodology to lead to a finite
estimate for S, moreover, to an estimate which is in perfect accordance with the em-
pirical Lindy Effect. Interestingly, a similar idea can help in physics, where also, in
some problems, straightforward computations lead to physically meaningless infi-
nite values.
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1 Formulation of the Problem

What is Lindy Effect. In this paper, we analyze a phenomenon known as Lindy
Effect; see, e.g., [9, 14]. Its main idea – as described later – is intuitively clear, but
its formal description is not that well known, so let us start by describing what is the
Lindy Effect.

Lindy Effect: intuitive idea. If we have a company that has been in successful exis-
tence for many decades and another company which is a recent startup, what are the
chances that each of these companies will survive for another decade? Intuitively, it
is clear that the company that has been successful for many years, that have success-
fully survived many crises, will probably survive for another decade (and probably
even longer), while a start-up has a high risk of not surviving – as most startups do.

This is an important issue if we plan a long-term investment: the stocks of which
of the two companies shall we mostly buy?

If we have a building that has been standing since the 19 century, and another
modernist experimental building built a few years ago, which of them has a better
chance of survival? Clearly, the one that has been standing for more than 100 years
will probably stand some more, while an experimental building, built by using not-
yet-fully-tested technology, is at risk of needing repairs soon.

If we have a family that has recently celebrated its 50th anniversary and another
family whose marriage has just been announced – who has a bigger chance of not
divorcing?

In all these cases, it is quite possible that an old company will crumble while
a startup will turn into a new Microsoft, that an old building will catch fire and
collapse while the new one will persist, that the old couple will divorce after 50
years of marriage while the newlyweds will live happily even after – but in all these
cases, the opposite is much more frequent.

Why is this called Lindy Effect? This name came from New York’s Lindy’s Deli-
catessen, which in the 1960s was a favorite gathering place for New York comedians
– and in those days, this meant the majority of top US comedians. Once in a while,
a new comedian would burst into the stage, so a natural question was: will he (it
was usually a he) last for long? Young people may have believed in every single
newcomer’s success, but more experience folks – who remembered that many new
promising comedians did not last long – would cool down the younger folks’ opti-
mism.

Lindy Effect: towards formalization. In all the above situations – and in many
similar ones:

• we know that some object has already survived for T years, and
• we are trying to predict the amount of time t during which it will most probably

survive in the future as well.

Alternatively, we can say that we want to predict the overall survival time S def
= T +t.
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If the value T is all we know, then we need to estimate the future value t based
only on this information. Let us denote the corresponding estimate by t = f (T ).
Which function f (T ) should we use for this estimation?

Lindy Effect: qualitative idea. The above informal discussion enables us to con-
clude that the larger survival-so-far time T , the largesr should be our estimate
t = f (T ). In other words, the desired estimation function f (T ) should be increasing.

However, there are many increasing functions. Which one should we choose?

Lindy Effect: precise formulation(s). The first person who tried to come up with a
precise formula for the Lindy Effect was Benoit Mandelbrot – the father of fractals.
By considering several actual situations, he concluded that the desired dependence
is linear: there exists a constant c > 0 such that if a system survived for T years, it
will, with high probability, survive for another t = c ·T years; see, e.g., [9].

Later, Nassim Nicholas Taleb analyzed even more cases and concluded that we
can safely take c = 1 and t = T ; see, e.g., [14]. In plain English, this means that if
a company survived for 100 years, it is reasonable to expect that it will survive for
another 100 years.

Weak and Strong Lindy Effect. We have two versions of Lindy Effect:

• The first version – that t = c · T for some c > 0 – is somewhat more accurate,
since we have a parameter here that we can adjust to make a better fit.

• The second version – that t = T – is somewhat less accurate but stronger.

To distinguish between these two formulations, we will call the dependence t = c ·T
a weak Lindy Effect and the dependence t = T the strong Lindy effect.

Why? Both formulations seem to be consistent with data, so they are real. The fact
that they are ubiquitous, that they cover all kinds of phenomena, seems to indicate
that there must be a general first-principles explanation for this effect.

What we do in this paper. In this paper, we will try to come up with this explana-
tion.

All this is very imprecise (“fuzzy”), so a natural idea is to try to use fuzzy tech-
niques; see, e.g., [2, 6, 10, 11, 12, 16]. On the complications side, we will see that
in the process of these tries, we will encounter a need to somewhat modify the way
such problems are usually described by fuzzy techniques.

The resulting complications will not be fully in vain: they will enable us to come
up with a natural way to avoid meaningless infinities in computations related to
physics.
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2 Let Us Use Fuzzy Techniques: A Straightforward Approach
and Why It Does Not Work in This Case

Starightforward approach: idea. At first glance, we have a typical problem of the
type solved by fuzzy techniques – e.g., in fuzzy control. We have rules which are
imprecise – in the sense that by themselves, they do not lead to an exact answer.

• In the control case, we may have rules like “if x is small, then control should be
small” – which allow many different control values (as long as they are small).

• In our case, all we know is that the overall survival time S should be larger than
the survival-so-far time T . This also allows many different values S – as long as
they are larger than T .

In fuzzy control, the fuzzy methodology means that:

• we describe the knowledge in terms of fuzzy degrees,
• we come up with a fuzzy recommendation, and then
• we apply an appropriate defuzzification procedure to come up with the numerical

recommendation.

Let us try to apply the same idea to our problem.

Straightforward approach: let us try. If all we know is the value T , and the only
thing that we know about the desired value S is that S > T , then the corresponding
membership function µ(S) describing this knowledge is straightforward:

• it assigns µ(S) = 1 to all the values S > T , and
• it assigns µ(S) = 0 to all other values.

So far so good, but the problem starts when we try to apply defuzzification.
The most natural idea is to select the value in which we have most confidence,

i.e., for which the corresponding value of the membership function is the largest. In
our case, this does help at all: the largest value µ(S) = 1 is attained for all numbers
S > T , so this idea does not allow us to select any specific value at all.

OK, this happens in fuzzy control as well. To avoid this non-uniqueness, fuzzy
control applications usually use centroid defuzzification, i.e., transform a member-
ship function µ(x) into a value

x =
∫

x ·µ(x)dx∫
µ(x)dx

.

Of course, we cannot directly apply this formula to our membership function µ(S),
since for this function, both integrals – in the numerator and in the denominator –
are infinite. However, what we can do is to consider our function µ(S) as the limit
of functions µn(S) which coincide with µ(S) up to S = T +n and are equal to 0 after
that. In the limit n→ ∞, the functions µn(S) tend to the desired function µ(S). So,
it makes sense:

• first, to apply defuzzification to each of these functions µn(S), resulting in values
Sn, and
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• then use the limit S = lim
n→∞

Sn of the resulting values Sn as the desired estimate
for S.

Unfortunately, this does not work either: for each function µn(S), centroid defuzzifi-
cation leads to Sn = T +(n/2), and thus, the limit S = lim

n→∞
Sn = ∞. Mathematically,

it is correct, but it does not convey the meaning that we want: instead of saying that
a company will survive for c ·T more years, this conclusion says that the company
will last forever.

We know that this is not true: many companies do survive for a long time, but
most of them eventually stop functioning. There are not that many companies that
have survived for many centuries: maybe Lloyd insurance is the only one.

3 Let Us Add Common Sense to Mathematics

So what can we do? At first glance, the above negative results may sound like a
paradox that shows limitations of the fuzzy approach. But a deeper analysis shows
that nothing is wrong with fuzzy approach, it is that we relied too much on mathe-
matics and did not use enough common sense.

Specifically, we naively assumed that µ(S) = 1 for all S > T . Mathematically,
it makes sense, but do we really believe – with confidence 1 – that a company that
survived for 100 years will survive for 1000 years more? If you believe this, how
about 1 million years? 1 billion years? Clearly not.

From the viewpoint of common sense, the value of the membership function
µ(S) describing a seemingly crisp property S > T should not stay constant, but
should instead decrease as S increases.

What is an adequate membership function: analysis of the problem. We are
interested in designing, for each T , a membership function µT (S) that describes our
degree of belief that, once the system has survived for time T , it will survive for a
longer time S≥ T .

What should be reasonable properties of these functions?
First, we know for sure that the system has survived for time T , so we should

have µT (T ) = 1.
Second, the longer the time S, the smaller is our belief that the system will survive

for this time. Thus, for each T , the function µT (S) should be decreasing. We will
call this property monotonicity.

Third, if we originally observed the system surviving for time T , and then later,
it turns out that it has survived for time T ′ > T , this means that from the original
function µT (S), we should only consider values S≥ T ′. Of course, since the function
µT (S) is decreasing, the largest remaining value is the value µT (T ′) which is smaller
than µT (T ) = 1. In fuzzy techniques, we usually consider normalized membership
functions, i.e., functions whose maximum is 1. So, to obtain the appropriate function
µT ′(S), we need to normalize the resulting restriction of the original function µT (S)
to values S≥ T ′. Normalization is usually performed by dividing all the membership
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degrees by the largest one – which, is in this case, is equal to µT (T ′). Thus, we must
have

µT ′(S) =
µT (S)
µT (T ′)

for all S≥ T ′. We will call this property consistency.
Finally, since we are trying to understand the phenomenon of Lindy Effect, which

is reasonably universal, we want the expressions µT (S) to be universal. In particu-
lar, it means that this effect should be the same whether we consider micro-objects
or macro-objects or mega-objects (how long will the Sun continue to shine?). The
corresponding membership degrees should thus not change is we simply change the
units in which we measure time. If we replace the original unit of time with the one
which is λ times smaller, then numerical values of both T and S and multiplied by
λ : we get λ ·T instead of T and λ ·S instead of S. In these terms, universality means
that µλ ·T (λ ·S) = µT (S).

Definitions and the main result. Now, we are ready to formulate our first result.

Definition 1. By a family of membership functions corresponding to >, we mean
a family of membership functions µT (S) with parameter T > 0 each of which is
defined for all S≥ T and which satisfy the following properties:

• for each T , we have µT (T ) = 1;
• for each T , the function µT (S) is decreasing with S (monotonicity);
• for each T < T ′ ≤ S, we have

µT ′(S) =
µT (S)
µT (T ′)

; (consistency), and

• for each T ≤ S and for each λ > 0, we have

µλ ·T (λ ·S) = µT (S) (universality).

Proposition 1. Every family of membership functions corresponding to > has the

form µT (S) =
(

T
S

)α

for some α > 0.

Proof. For T = 1 and λ ≥ 1, universality implies that

µλ (λ ·S) = µ1(S).

On the other hand, due to consistency, with T = 1 < T ′ = λ , we have

µλ (λ ·S) =
µ1(λ ·S)

µ1(λ )
.

Equating the resulting two expressions for the same value µλ (λ · S), we conclude
that

µ1(S) =
µ1(λ ·S)

µ1(λ )
,
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i.e., equivalently,
µ1(λ ·S) = µ1(λ ) ·µ1(S) (1)

In particular, for S = λ−1, we get

1 = µ1(1) = µ1(λ ) ·µ1(λ
−1),

hence
µ1(λ

−1) =
1

µ1(λ )
. (2)

For each λ < 1 and S, and for S′ = λ ·S and λ ′ = 1/λ > 1, the formula (1) leads
to µ1(λ

′ ·S′) = µ1(λ
′) ·µ1(S′), i.e., µ1(S) = µ1(1/λ ) ·µ1(λ ·S), and thus, due to (2),

to the formula (1).
For λ = 1, the property (1) is trivially true. Thus, the property (1) is satisfied for

all λ > 0 and for all S.
Functions that satisfy this property are known as multiplicative, and it is known

that every monotonic multiplicative function has the form µ1(x) = x−α for some
real value α; see, e.g., [1]. Since all membership functions µT (S) are decreasing,
we must have α > 0.

For each T ≤ S, we can then use the universality property with λ = T−1 and get
µT (S) = µ1(S/T ), thus µT (S) = (S/T )−α . The proposition is proven.

This explains (weak) Lindy Effect. To make sure that for the membership func-

tion µT (S) =
(

T
S

)α

, both numerator and denominator integrals in the formula for

centroid defuzzification are finite, we must have α > 2. In this case,∫
∞

T
S ·
(

T
S

)α

dS = T α · 1
α−2

·T 2−α =
1

α−2
·T 2

and ∫
∞

T

(
T
S

)α

dS = T α · 1
α−1

·T 1−α =
1

α−1
·T,

thus

S =

∫
S ·µT (S)dS∫ ∫

µT (S)dS
=

α−1
α−2

·T.

Thus, the remaining time t = S− T is indeed proportional to T , which is exactly
what we called weak Lindy Effect.

4 What About Probabilistic Case

Probabilistic case: (almost) the same result. In the previous section, we consid-
ered the case when we use fuzzy logic to describe the corresponding uncertainty.
What if instead we use probabilities?
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In this case, for each T , we have the probability pT (S) that the system will survive
for time S once it has survived for time T . The same arguments as in the fuzzy case
show that this function:

• should also satisfy the condition pT (T ) = 1,
• should also be decreasing as S increases, and
• should also not depend on the choice of the measuring unit, i.e., we should have

pλ ·T (λ ·S) = pT (S) for all T ≤ S and λ > 0.

And if we have already observed the system for time T ′> T and the system survived
during this time, then the new probabilities pT ′(S) should be computed by using the

formulas for conditional probability: pT ′(S) =
pT (S)
pT (T ′)

.

Thus, the new functions should satisfy the same conditions as described in Defi-

nition 1, and thus, by Proposition 1. it should have the same form pT (S) =
(

T
S

)α

for some α > 0.
In the probabilistic case, a natural numerical estimate is the mean value S =∫

S ·ρT (S)dS, where the probability density function ρT (S) can be obtained by dif-
ferentiating the function pT (S) – which is, in effect, equal to 1 minus the cumulative

distribution function; see, e.g., [13]. In this case, we get S =
α−1

α
. So, in this case,

we also get the weak Lindy Effect.

Why do fuzzy and probabilistic approaches lead, in effect, to the same formula?
The fact that by using such different techniques as fuzzy and probabilistic, we get the
exact same result – that the expected remaining survival time t is proportional to the
survival-so-far time T – is a good indication that there is an even more fundamental
reason behind this dependence, reason not depending on which technique we use to
describe uncertainty.

And indeed, such a reason is easy to describe: the reason is what we called un-
versality, that the result should not depend on the choice of the measuring unit. Our
original problem was to find the estimate t = f (T ). In terms of the estimating func-
tion f (x), universality means that if we have t = f (T ) in the original units, then the
same relation t ′ = f (T ′) should hold if we describe the times in the new units, i.e.,
if we take t ′ = λ · t and T ′ = λ ·T .

Formulating the problem in precise terms. Let us describe this requirement in
precise terms.

Definition 2. We say that the function t = f (T ) is universal if for all t, T , and λ > 0,
the equality t = f (T ) implies that t ′ = f (T ′), where t ′ = λ · t and T ′ = λ ·T .

Proposition 2. Every universal function has the form f (T ) = c · T for some con-
stant c.

Proof. Let us denote f (1) by c, so that c = f (1). Then, for each T , if we take
λ = T , then universality enables us to imply that T · c = f (T · 1), i.e., that indeed
f (T ) = c ·T . The proposition is proven.

Discussion. So, indeed, universality implies the weak Lindy Effect.
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5 Why Strong Lindy Effect

Reminder. In the above text, we explained the weak Lindy Effect, according to
which the remaining survival time t is related to the survival-so-far time T by the
formula t = c · T , for some constant t. However, as we have mentioned, there is
strong evidence that this constant c is equal to 1, i.e., that we have what we called
the strong Lindy Effect t = T.

How can we explain this?

A simplified (somewhat naive) explanation. A simplified explanation comes from
Laplace Indeterminacy Principle (see, e.g., [5]), according to which if we have no
reason to believe that two quantities are different, it makes sense to assume that they
are equal.

From this viewpoint, since we do not have any reason to believe that the remain-
ing survival time t is smaller or larger than the survival-so-far time T , so it makes
sense to take t = T.

A better explanation: fuzzy case. In our problem, we know the value T , and know
that T < S. In this case, as we have mentioned earlier, the straightforward fuzzy
approach does not lead to any meaningful estimate for S.

But what if we reverse the problem: what is we assume that S is known, and the
only information that we have about T is that 0 ≤ T ≤ S. In this case, the corre-
sponding (crisp) knowledge leads to the following membership function: µS(T ) = 1
when 0 ≤ T ≤ S and µS(T ) = 0 otherwise. For this membership function, centroid
defuzzification leads to T = S/2.

So, if we know S, then we should take T = S/2. It is therefore natural to conclude
that if we know T , then we should take S for which T = S/2. For this S, we have
S = 2T , so the remaining survival time is t = S−T = T , which is exactly the strong
Lindy Effect.

Probabilistic case. We can apply the same reversal idea to the case of probabilistic
uncertainty.

Suppose that we know the value S, and the only information that we have about
T is that T is between 0 and S. In this case, the maximum likelihood approach –
a natural formalization of the Laplace Indeterminacy Principle – implies that the
corresponding probability distribution on the interval [0,S] is uniform [5]. For this
uniform distribution, the mean value is T = S/2, which also prompts us to use the
estimate S = 2T and thus, t = T .

Comment. In [4, 8], a similar idea was used to explain why in engineering, after we
get an estimate of uncertainty based on known factors, practitioners usually double
this estimate to take into account possible unknown factors as well.

This leads, e.g., to doubling the safety margins computed based only on the
known factors.
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6 Application to Physics: How to Avoid Physically Meaningless
Infinite Values

Problem: reminder. It is known that in physics, some computations lead to mean-
ingless infinite values. The simplest example of such a phenomenon is computing
the overall energy of an electron’s electric field; see, e.g., [3, 15] for detail.

An electron is an elementary particle, which means that it has no independent
parts. According to special relativity, all velocities are bounded by the speed of light.
Thus, if the electron was not point-wise, if it had at least two spatially separated
points, then it would take some time for these points to influence each other – and
therefore, during this time, these two points would act independently. So, an electron
has to be a point-wise particle.

For a point-wise particle, the value of its electric field E at any point x is de-
termined by the Coulomb Law, as proportional to the r−2, where r is the distance
between this point and the location of the electron.

It is known that the energy density ρ(x) is proportional to the square of the elec-
tric field, i.e., to r−4. The overall energy E can be computed by integrating this den-
sity over the whole 3-D space: E =

∫
ρ(x)dx. The problem is the resulting integral

is infinite:

E =
∫

r−4 dx =
∫

∞

0
r−4 ·4π · r2 dr = 4π ·

∫
∞

0
r−1 dr = 4π · r−1|0∞ = ∞.

So, we get a physically meaningless value for a physically meaningful quantity –
the overall energy of the electron’s electric field.

How can we make the corresponding estimate physically meaningful – i.e., fi-
nite?

Comment. There are many such infinities in classical physics – the existence of such
infinities was one of the main reasons why quantum physics was discovered in the
first place. However, in contrast to many other cases when the answer become finite
in the quantum case, for the overall energy of the electron’s electric field remains
infinite in the quantum cases as well.

Known idea. A previously proposed possible way to solve this problem is to take
into account that measurements are always imprecise, that at any given moment of
time, there is a limit on how accurately we can measure, e.g., the distance – and
probably there is a fundamental limit; see, e.g., [7].

So, instead of the actual distance r, we can only conclude that the actual distance
is between r− ε (to be more precise, max(0,r− ε), since the distance cannot be
negative) and r+ ε for some ε . Thus, the value of the electric field at any point x
is somewhere between (r+ ε)−2 and (max(0,r− ε))−2, and, correspondingly, the
overall energy is between

E =
∫
(r+ ε)−4 dx and E =

∫
(max(0,r− ε))−4 dx.
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One can check that the first integral E is finite – for small r, the integrated func-
tion (r+ε)−4 is bounded from above by the value ε−4. However, the second integral
is clearly infinite – since for r ≤ ε , we have max(0,r− ε) = 0 and thus,

(max(0,r− ε))−4 = ∞.

So, instead of the infinite value for the total energy E of the electron’s electric
field, we have a semi-infinite interval of possible values [E,∞). In other words, the
only information that we have about the overall energy is that it is larger than or
equal to E.

Lindy Effect helps. The situation when the only information that have about an
unknown quantity S is that it is larger than or equal to some known quantity T is
exactly the situation described by the Lindy Effect.

According to the Lindy Effect – which we explained in this paper – in such
a situation, the appropriate estimate for the unknown value E is a finite estimate
E = c ·E (where it is highly probable that c = 1).

So, we have a finite estimate for the overall energy – thus avoiding the meaning-
less infinity.
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12. V. Novák, I. Perfilieva, and J. Močkoř, Mathematical Principles of Fuzzy Logic, Kluwer,

Boston, Dordrecht, 1999.
13. D. J. Sheskin, Handbook of Parametric and Non-Parametric Statistical Procedures, Chapman

& Hall/CRC, London, UK, 2011.
14. N. N. Taleb, Antifragile: Things That Gain from Disorder, Random House, New York, 2012.
15. K. S. Thorne and R. D. Blandford, Modern Classical Physics: Optics, Fluids, Plasmas, Elas-

ticity, Relativity, and Statistical Physics, Princeton University Press, Princeton, New Jersey,
2017.

16. L. A. Zadeh, “Fuzzy sets”, Information and Control, 1965, Vol. 8, pp. 338–353.


	Fuzzy Techniques, Laplace Indeterminacy Principle, and Maximum Entropy Approach Explain Lindy Effect and Help Avoid Meaningless Infinities in Physics
	Recommended Citation

	tmp.1638981560.pdf.zL1ZR

