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Abstract: As a system becomes more complex, at first, its description and analysis becomes more1

complicated. However, a further increase in the system’s complexity often makes this analysis2

simpler. A classical example is Central Limit Theorem: when we have a few independent sources3

of uncertainty, the resulting uncertainty is very difficult to describe, but as the number of such4

sources increases, the resulting distribution gets close to an easy-to-analyze normal one – and5

indeed, normal distributions are ubiquitous. We show that such limit theorems often make6

analysis of complex systems easier – i.e., lead to blessing of dimensionality phenomenon – for all7

the aspects of these systems: the corresponding transformation, the system’s uncertainty, and the8

desired result of the system’s analysis.9

Keywords: limit theorems; curse and blessing of dimensionality; neural networks10

1. Introduction: From Curse of Dimensionality to Blessing of Dimensionality11

First, a curse. Often, the more we analyze a system, the more accurately we want to12

predict its behavior – the more factors we need to take into account, the more complex13

the system’s behavior.14

In some cases, real-life data is intrinsically low-dimensional: most of the factors15

can be reduced to a few of them. However, in many other real-life situations, all these16

factors are important. As a result, as a system’s description becomes more complex,17

analyzing this system becomes more complicated. This phenomenon is known as curse18

of dimensionality.19

Then, a blessing. Interestingly, often, a further increase in the system’s complexity often20

makes this analysis simpler. Following [1], we will call this phenomenon blessing of21

dimensionality.22

Example. A classical example of this first-curse-then-blessing phenomenon is the joint23

effect of many random phenomena. When we know the probability distribution of each24

phenomenon, in principle, we can compute their joint effect – but, as the number of25

these phenomena becomes larger and larger, the corresponding computations become26

more and more complicated. At first glance, this is a classical example of the curse of27

dimensionality.28

However, as the number of these phenomena increases further, we start seeing the29

effect of the Central Limit Theorem (see, e.g., [2]), according to which, under reasonable30

conditions, the joint effect of many small independent random phenomena is close to31

Gaussian. The resulting distribution becomes very close to the easy-to-analyze Gaussian32

distribution – and this is one of the main reasons why normal (= Gaussian) distributions33

are ubiquitous.34

Other examples. In the last decade, many other examples of blessing-of-dimensionality35

appeared, both in the general analysis of complex systems (see, e.g., [1,3–7]) and, specifi-36

cally, in the analysis of neural networks; see, e.g. [8–11].37
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Are these lucky examples or a general trend? At first glance, it may appear that all these38

examples are lucky breaks in the dark world of curse-of-dimensionality phenomena. So,39

a natural question is: is this pessimistic viewpoint correct – or blessing-of-dimensionality40

results are ubiquitous?41

It is a general trend. In this paper, we show that the above pessimistic viewpoint is –42

well – unnecessarily pessimistic. Actually, as we will show, similar limit theorems are43

ubiquitous – and their use can (and do) help in data processing in general – and, in44

particular, when using neural networks to process data.45

While most above-cited blessing of dimensionality results are related to a statistical46

description of some phenomenon, we show that there are other limit theorems that are47

related to non-random phenomena.48

We also show that limit theorems help explain the surprising empirical success of49

many techniques, from traditional neural networks to convex techniques and clustering.50

51

Caution: blessing-of-dimensionality is not a panacea.52

• The fact that limit theorems can explain some empirical successes does not mean, of53

course, that these blessing-of-dimensionality results are the only reason for these54

empirical successes: sometimes, as we have mentioned, the multi-dimensional data55

is actually intrinsically low-dimensional.56

• The fact that limit theorems often make data processing easier does not mean that as57

the data complexity increases, the analysis always becomes simpler: many problems58

remain complex. At present, there is no clear general understanding of when the59

blessing of dimensionality occurs and where it does not occur. It would be nice to60

find such an understanding.61

What we do in this paper. In this paper, we review, in an expository mathematics format,62

several published results (some of them our own) showing that limit theorems can63

simplify the analysis of complex systems in general and neural networks in particular.64

Our main interest is in applications to neural networks, so when a theorem has65

such applications, we explicitly mention them – but we mention other applications as66

well. The number of neural applications of limit theorems is, at present, not large, but67

we hope that papers like this one – that explain how such theorems are successfully used68

in other applications – will encourage interested readers to develop new applications of69

these blessing-of-dimensionality results to neural networks.70

The intended audience of this paper are readers with a conceptual understanding71

of the mathematics involved, not necessarily with a specialist knowledge. Readers72

interested in more detailed discussions and/or exact formulations and proofs are wel-73

come to look at the corresponding papers listed in the bibliography. In these papers,74

the corresponding discussions, formulations, and proofs are presented in all necessary75

detail.76

The general study of blessing-of-dimensionality phenomena has started only a few77

decades ago, there are still more open problems than results – and available results are78

mostly breakthroughs in different directions, not yet forming a very coherent picture.79

Good news is that there are already many such results, and their applications already80

over many areas. We hope that by listing these results and some of their applications,81

we will encourage interested readers to get involved in the related research – and that,82

together, we will make this phenomenon even more ubiquitous.83

How this paper is structured. We start, in Section 2, with classifying sources of di-84

mensionality into spatial and temporal. Such a distinction is well known in neural85

network applications; in this section, we extend it to the general case of complex systems.86

Section 3 deals with spatial dimensionality, of which the dimensionality correspond-87

ing to the Central Limit Theorem is one of the examples. We start, in Subsection 3.1,88

with a new application of the Central Limit Theorem. In Subsection 3.2, we consider89
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generalizations of Central Limit Theorem to other types of probability distributions. In90

Subsection 3.3, we consider limit theorems corresponding to the case when we do not91

know the corresponding probabilities, when we only know the set of possible values92

of the corresponding quantity or quantities. Subsection 3.4 lists related open questions.93

Finally, Section 4 deals with limit theorems related to temporal dimensionality.94

2. Two Main Sources of Dimensionality: Spatial and Temporal95

To provide an adequate analysis of the situation, let us first observe that in general,96

there are two main sources of dimensionality:97

• First, at each moment of time, there is usually a large number of phenomena –98

located, in general, at different points in space – that need to be taken into account.99

Even if we use a few parameters to describe each of these phenomena, overall, we100

will need a very large number of parameters to describe all these phenomena – and101

thus, the dimensionality of the problems grows. We will call this dimensionality102

of spatial origin, or simply spatial dimensionality, for short. The above-mentioned103

Central Limit Theorem is a good example of spatial dimensionality.104

• Also, there may be parameters describing the history of the analyzed phenomenon –105

which also affect its current state. What naturally comes to mind is that the values106

of physical quantities change with time. In some cases, we observe these changes107

and we can analyze the corresponding time series. In other cases, we only observe108

the final results of these changes: e.g., inside a sensor, the original value may be109

transformed many times, and what we get as a resulting signal is the result of all110

these past transformations. In yet other cases, what changes are the simulated values111

– e.g., when we apply iterative algorithms. We will call the resulting dimensionality112

of temporal origin, or simply temporal dimensionality.113

And, of course, in many real-life phenomena, we have both spatial and temporal sources114

of dimensionality which are difficult to separate. A neural-related example of such115

phenomena is traveling waves; see, e.g., [12,13].116

In this paper, we will mention the limit theorems related to both spatial and tempo-117

ral sources of dimensionality – and we hope that these results can be extended to the118

phenomena where both sources are intertwined.119

Comment. Limit theorems are often somewhat complicated to understand and prove. In120

our experience, a better understanding of a complex multi-dimensional phenomenon121

is usually achieved if we consider easier-to-analyze few-dimensional particular cases122

or analogues. For limit theorems, a natural few-dimensional analogues are iterative123

methods in numerical mathematics, such as:124

• Newton’s iterative method

x(k+1) = x(k) −
f
(

x(k)
)

f ′
(
x(k)

)
for finding the solution to the equation f (x) = 0 or125

• the gradient descent method

x(k+1)
i = x(k)i − α · ∂ f

∂xi |x=x(k)

for finding the minimum of a function f (x); we mention this method, since back-126

propagation, the main way neural networks learn, is, from the mathematical view-127

point, exactly gradient descent – with additional computational simplifications; see,128

e.g., [14,15].129

In both examples, convergence is not guaranteed, and the results explaining when there130

is convergence are often difficult to prove. However, what is much easier to prove is that131
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if there is a convergence, then the limit satisfies the desired property – e.g., for Newton’s132

method the limit value x satisfies the property f (x) = 0. In some cases, the limit value133

only satisfies part of this desired property: for example, for the gradient descent method,134

the limit is always a stationary point but not necessarily the desired global minimum of135

the objective function f (x). Indeed:136

• For Newton’s method, if x(k) → x, then, in the limit, we get x = x− f (x)
f ′(x)

, which137

implies that f (x) = 0.138

• For the gradient descent, if x(k) → x, then, in the limit, we get xi = xi − α · ∂ f
∂xi

,139

which implies that
∂ f
∂xi

= 0. Thus, the limit point is always a stationary point,140

which is a necessary (but, as is well known, not sufficient) condition for it being the141

location of the minimum.142

Similarly to these cases, in this paper, we will concentrate not so much on the conditions143

under which the processes converge, but rather on the description of the limit cases when144

there is convergence.145

3. Dimensionality of Spatial Origin146

As we have mentioned, the standard Central Limit Theorem is an example of what147

we called dimensionality of spatial origin. While many consequences of this theorem are148

well known, as we will show, there are many aspects of this theorem which still need149

exploring. So, the first thing we will consider – in the first subsection of this section – is150

what are the less known consequences of the Central Limit Theorem.151

Of course, the limit distribution does not have to be normal: as we have mentioned,152

the convergence to the normal distribution happens only under certain conditions. For153

situations when these conditions are not satisfied, there are more general limit theorems.154

Applications of these more general theorems – mostly to uncertainty quantification – is155

what we will overview in the second subsection of this section.156

All this assumes that we know the probability distributions that we are trying157

to combine. But what if we do not know the probabilities, what if we only know the158

corresponding range of possible values – and we do not know the probabilities of159

different points from this range? This situation is discussed in the third subsection of160

this section.161

This section ends with related open questions.162

3.1. Not-Well-Known Consequences of the Central Limit Theorem163

Why are many things in the world discrete? Outside quantum physics, most physical164

processes are continuous, most probability distributions are continuous – so what we165

should observe should be continuous as well. However, in reality, many things in the166

real world are discrete. We do not have weather continuously changing from sunny to167

rain: most of the time, we either have a sunny day or a rainy day. Yes, it is possible to168

have hybrid animals like mules, but most of the time, animals we see fall into one of the169

precise categories.170

In many specific examples, there is a specific explanation for this discreteness – e.g.,171

Darwin’s Theory of Evolution explains that only mutations which are beneficial to the172

individuum survive, and all intermediate stages between two beneficial states become173

extinct fast. However, the very fact that the same discreteness phenomenon appears in174

many different application areas seems to be an indication that discreteness is a general175

phenomenon that must have a general explanation.176

Discreteness is observed in machine learning as well: when we use a neural network177

(or any similar tool) for classification, what this network actually produces are continuous178

numbers – that can be converted, e.g., to degrees to which the object belongs to different179

categories. However, usually, we do not return these degrees to the user. What we180
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usually do at the end is select one of these categories (e.g., the most probable one) – and181

in most cases, this is exactly the desired classification, cat or dog, car or not-a-car, disease182

or healthy, and this is usually exactly what the users want.183

This discreteness definitely helps when making decisions – instead of a continuum184

of possible values, we need to deal with only a few discrete ones. So, this discreteness185

can be viewed as an example of a blessing of dimensionality.186

But why are we mentioning this discreteness? At first glance, it may seem to be187

unrelated to the Central Limit Theorem – which is all about the normal distribution,188

which is, of course, absolutely continuous. Interestingly, there is a relation. Let us189

describe it.190

This puzzling discreteness has been observed before. Of course, we are not the first191

ones who noticed that, in spite of the the fact that many processes are continuous, what192

we observe is often discrete. For example, B. S. Tsirelson noticed in [16] that in many193

cases, when we reconstruct a signal from noisy data, and we assume that the resulting194

signal belongs to a certain class, the reconstructed signal is often an extreme point from195

this class – i.e., is one of the discrete extreme points. In other words, the result is as196

discrete as our assumptions allow. For example:197

• when we assume that the reconstructed signal is monotonic, the reconstructed198

function is often (piece-wise) constant;199

• if we additionally assume that the signal is one time differentiable, the result is200

usually one time differentiable but rarely twice differentiable, etc.201

Tsirelson’s explanation. Out of many papers that mention the puzzling discreteness, we202

cited [16] – because this paper not only mentions the fact of discreteness, it also provides203

an explanation for this discreteness, and this explanation is closely related to the Central204

Limit Theorem (see also [17]).205

Indeed, when we extract a signal from a mixture with Gaussian noise, then the206

maximum likelihood estimation (a traditional statistical technique; see, e.g., [2]) means that207

out of all possible signals from the given class of signals, we look for the signal which208

is the closest (in the least squares — i.e., in effect, Euclidean – metric) to the observed209

“signal + noise” combination.210

In particular, if the signal is determined by finitely many (say, d) parameters, we
must look for a signal~s = (s1, . . . , sd) from the a priori set A ⊆ IRd that is the closest (in
the usual Euclidean sense) to the observed values

~o = (o1, . . . , od) = (s1 + n1, . . . , sd + nd),

where ni denotes the (unknown) values of the noise.211

Since the noise is Gaussian, we can conclude that the average value of (ni)
2 is close

to σ2, where σ is the standard deviation of the noise. In other words, we can conclude
that

(n1)
2 + . . . + (nd)

2 ≈ d · σ2.

In geometric terms, this means that the distance√√√√ d

∑
i=1

(oi − si)2 =

√√√√ d

∑
i=1

n2
i

between~s and~o is ≈ σ ·
√

d. Let us denote this distance σ ·
√

d by ε.212

For simplicity of explanation, let us consider the case when d = 2, and when A is a213

convex polygon. When the point~o corresponding to observations is itself inside the set214

A, then this point is its own closest point in the set A. Let us consider the case when the215

point~o is outside the set A. We can divide all points~o which are outside the set A and216
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which are ε-close to A into several zones depending on what part of A is the closest to~o:217

one of the sides (1-D faces), or one of the vertices.218

Geometrically, the set of all points~0 for which the closest point a ∈ A belongs to the219

side e is bounded by the straight line segments orthogonal (perpendicular) to e. The total220

length of this set is therefore equal to the length of this particular side; hence, the total221

length of the set of all the points that are the closest to the sides is equal to the perimeter222

of the polygon. This total length thus does not depend on ε at all.223

On the other hand, the overall length of the set of all the points~o at the distance ε224

from A grows with the increase in ε; this length grows approximately as the circumfer-225

ence of a circle, i.e., as const·ε.226

When ε increases, the (constant) perimeter of the polygon A is a vanishing part of227

the overall length. Hence, for large ε:228

• the fraction of the points that are the closest to one of the sides tends to 0, while229

• the fraction of the points~o for which the closest point from the set A is one of A’s230

vertices tends to 1.231

Thus, with high probability, the reconstructed signal corresponds to one of the vertices232

(extreme points) of the set A.233

Similar arguments can be repeated for any dimension d. For the same noise level σ,234

when d increases, the distance ε = σ ·
√

d also increases, and therefore, for large d, for235

“almost all” observed points~o, the reconstructed signal is one of the extreme points of236

the a priori set A.237

Much less probable is that the reconstructed signal~s belongs to the 1-dimensional238

face of the set A, even less probable that~s belongs to a 2-D face, etc.239

Methodological consequence. So, when the dimension increases, we have a clear240

example of blessing of dimensionality: instead of having to consider a continuum of241

possible states, we only have to deal with a much smaller discrete set of extreme points –242

vertices of the corresponding polyhedron.243

So, all observed phenomena falls into a few clusters – exactly as we observe in many244

cases.245

Comment. This idea helps even in the quantum case. Namely, in quantum physics,246

there is a known paradox formulated by Schroedinger himself (the author of the main247

equation of quantum physics): while in quantum physics, we can have a superposition248

of any two states, how come we never see a superposition of two macro-states, e.g., of249

the state in which a cat is alive and the state in which the same cat is dead? This is indeed250

a serious problem, it was one of the reasons why Einstein did not believe that quantum251

physics is an adequate description of reality; see, e.g., [18–20].252

Strictly speaking, this is not a paradox in the purely logical sense of the word – it is253

just a contradiction between our intuition and the predictions of quantum theory. Many254

features of quantum physics are counter-intuitive, but usually, such counter-intuitive255

features are about the micro-world of elementary particles, not about the usual macro-256

size objects. The above idea makes this contradiction less troubling, because it implies257

that with very high probability, we will observe one of the two original states and not258

their convex combination (i.e., in this case, not their superposition).259

Resulting discreteness is only approximate. Of course, as with every probabilistic260

phenomenon, the above conclusion about discreteness is only approximate: we do not261

necessarily get one of the vertices, we get a point which is close to one of the vertices.262

This is why we did not write that all observed phenomena coincide with one of the few263

cases – we wrote that all observed phenomena fall into a few clusters. Within each cluster,264

we still have continuous changes – e.g., we can have cats of different length, different265

weight, etc.266
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3.2. Uncertainty Quantification and Probabilistic Limit Theorems – Including Theorems Beyond267

Normal Distributions268

Need for data processing. What are the main objectives of science and engineering? We269

want to understand the world – i.e., to learn the values of the quantities that characterized270

the current state of the world. We want to predict the future state of the world – i.e.,271

we want to predict the future values of the corresponding quantities. And finally, we272

want to change the world – we want to find the design parameters that satisfy given273

specifications, we want to find the control values that will lead a system to the desired274

state, etc.275

Some quantities that describe the world we can directly measure: e.g., the distance276

between two houses on the same street. For many other quantities, we cannot measure277

them directly: e.g., the distance to a nearby star. And we clearly cannot directly measure278

the future values of the quantities or the adequate value of control parameters. All these279

quantities have to be estimated based on the known information about the world – i.e.,280

based on the results of measuring some measurable quantities.281

To estimate a desired quantity y, we need to know the relation y = f (x1, . . . , xn)282

between this quantity and measurable quantities x1, . . . , xn. Sometimes, we know an283

explicit analytical expression for this relation. In many other cases, we just know an284

algorithm that computes y from the values xi. This algorithm can include a numerical285

solution of a complex system of non-linear differential equations – as when we predict286

tomorrow’s weather. The algorithm can also be a neural network trained to estimate the287

desired value y based on the known values x1, . . . , xn.288

Need for uncertainty quantification. Whether we use neural networks or other algo-289

rithms for data processing, the inputs to all these algorithms are real numbers. These290

real numbers usually come from measurements, and measurements are never absolutely291

accurate; see, e.g., [21]. There is always noise. As a result, the measurement results x̃i are,292

in general, somewhat different from the actual (unknown) values xi of the corresponding293

quantities, and the difference ∆xi
def
= x̃i − xi – known as measurement error – is, in general,294

different from 0. So, when we apply the data processing algorithm f to the measurement295

results, the algorithm’s output ỹ = f (x̃1, . . . , x̃n) is, in general, different from the value296

y = f (x1, . . . , xn) that we would have obtained if we knew the actual values xi.297

In practice, it is important to know how close is our estimate ỹ to the desired value298

y, i.e., in other words, how big can the difference ∆y def
= ỹ− y be. For example, suppose299

that we are prospecting for oil, and our estimate ỹ for the amount of oil y in the given300

region is 150 million ton. Then, if the accuracy is ±10 million tons, this estimate is good301

news, and we can start exploiting this region. On the other hand, if it is 150± 200, then302

maybe there is no oil at all, so before we invest a lot of money into digging deep wells,303

we better perform more measurements to make sure that this money will not be wasted.304

Estimating ∆y is one the most important aspects of uncertainty quantification.305

Possibility of linearization. We are interested in estimating the quantity

∆y = f (x̃1, . . . , x̃n)− f (x1, . . . , xn) = f (x̃1, . . . , x̃n)− f (x̃1 − ∆x1, . . . , x̃n − ∆xn).

Measurements are usually reasonable accurate, so the measurement errors ∆xi are
relatively small. For small values ∆xi, their squares (∆xi)

2 are much smaller than
the values themselves – and can therefore be usually safely ignored. For example, if
∆xi ≈ 10%, then (∆xi)

2 ≈ 1% � ∆xi. Thus, a reasonable idea is to expand the above
expression for ∆y in Taylor series and ignore terms which are quadratic (or of higher
order) in terms of the measurement errors ∆xi. As a result, we get a linear dependence:

∆y ≈
n

∑
i=1

ci · ∆xi, where ci
def
=

∂ f
∂xi

.

306
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Comment. This linearization – replacing the generic dependence with a linear one – is a307

usual idea in applications. Actually, it one of the main ideas in many applications; see,308

e.g., [22].309

Here, the Central Limit Theorem can help. Let us first consider an important case –310

typically described in textbooks – when we know the probability distribution of each311

measurement error ∆xi. Usually, each measuring instrument is calibrated – if it has a bias,312

i.e., if the mean value E[∆xi] of the measurement error is not 0, we simply subtract this313

mean value from all the measurement results and thus, reduce it to 0.314

In many practical applications, the number n of inputs is large, and the role of315

each of these inputs is relatively small. For example, one of the important data when316

prospecting for oil is seismograms – several-times-a-second recordings of the seismic317

signal. There are thousands of the corresponding values, and the effect of each indi-318

vidual value of the result of data processing is indeed small. The measurement errors319

corresponding to different measurements are usually reasonably independent. Thus,320

we are under the condition of the Central Limit Theorem – so we can conclude that the321

desired estimation error ∆y is normally distributed.322

A normal distribution is uniquely determined by its mean µ and its standard
deviation σ. When each measurement error ∆xi has mean value 0, the mean value of
their linear combination ∆y is also 0, and the variance σ of this linear combination can
be determined from the known fact that the variance of the sum of independent random
variables is equal to the sum of variances:

σ2 =
n

∑
i=1

c2
i · σ2

i .

323

How can we actually estimate σ? In principle, we can directly use the above formula
to estimate the standard deviation σ of the approximation error ∆y. The main compu-
tational difficulty is that the data processing algorithm f is usually very complicated
(especially in case of neural networks), so it is not possible to compute the partial deriva-
tives analytically. We can, however, use the fact that a partial derivative is defined as the
limit of the ratios

∂ f
∂xi

= lim
h→0

f (x̃1, . . . , x̃i−1, x̃i + h, x̃i+1, . . . , x̃n)− ỹ
h

,

and thus, for a sufficiently small h, the value of the ratio is very close to the desired
partial derivative. Thus, we can estimate ci as

ci ≈
f (x̃1, . . . , x̃i−1, x̃i + h, x̃i+1, . . . , x̃n)− ỹ

h
.

The problem with this idea is that it takes too long. Indeed, if we have several324

thousand inputs, then, to compute all the corresponding values ci, we need to call the325

data processing algorithm f (which often takes hours to compute) n + 1 times: one time326

to compute ỹ and n time to compute the corresponding n ratios ci. For several thousand327

inputs, this is not realistic.328

Good news is that we can instead use Monte-Carlo techniques: instead of computing
n partial derivatives, we can simply emulate, certain number of times K, measurement
errors δx(k)i which are normally distributed with standard deviation σi, and compute the
differences

δy(k) = ỹ− f
(

x̃1 − δx(k)1 , . . . , x̃n − δx(k)n

)
.

By the same logic as before, the differences δy(k) are normally distributed with the329

desired standard deviation σ. Thus, from a sample of K values, we can estimate σ with330

accuracy≈ 1/
√

K [2]. So, if we want to estimate σ with relative accuracy 1/
√

K ≈ 20%, it331
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is sufficient to call the algorithm f K = 25 times – which is much smaller than thousands332

needed for exact estimation.333

So what? Why are we spending so much time on the ideas that are well known to many334

readers? Because this will prepare readers to something that – unfortunately – not too335

many readers know: that we can use limit theorems beyond normal distributions to336

cover other realistic cases of uncertainty quantification.337

Need for interval uncertainty. In the previous text, we assumed that for each measure-338

ment, we know the probability distribution of the corresponding measurement error.339

The usual way to find this distribution is to calibrate the given measuring instrument340

(MI), i.e., to compare its results with the results of a “standard” (= much more accurate)341

measuring instrument. Since the standard measuring instrument (SMI) is much more342

accurate that the one we are calibrating, we can safely ignore SMI’s measurement errors343

(in comparison with MI’s measurement errors), and take the results measured by SMI as344

true values.345

However, there are two important cases when calibration is not done. The first is346

the case of state-of-the-art measurements, when the MI that we have is the best there is.347

It would be great if near the Hubble telescope, there would fly a 5 times more accurate348

instrument for measuring the stars’ locations, but this telescope is the best we have.349

Similarly, in geophysics, oil prospecting companies use the best measuring instruments350

they can find – these instruments are expensive, but digging a well in the location where351

there is no oil would be much more expensive. In this case, there is no SMI to compare,352

so we cannot calibrate our MI.353

Another case is manufacturing and other practical applications. In this case, in354

principle, we can calibrate every single measuring instrument and determine its prob-355

ability distribution. However, nowadays, many sensors are cheap – e.g., kids playing356

with robots buy distance sensors for a few bucks. However, calibrating a sensor means357

utilizing a standard measuring instrument, which is usually much more expensive to358

use. The companies usually cannot afford to calibrate all their sensors. Instead, we359

have to rely on the information provided by the manufacturers of the corresponding360

measuring instruments.361

The manufacturer of the MI also has the option to calibrate it – but since this362

calibration costs a lot, the calibrated sensors, with certified probability distributions of363

measurement errors, cost much more. It is much cheaper to buy a sensor for which364

only the minimum of necessary information is provided. In practice, this means that the365

only information that we have about the measurement error ∆x is an upper bound ∆366

on its absolute value: |∆x| ≤ ∆. (At least such an upper bound needs to be provided –367

otherwise, it is not a measuring instrument, it is a wild guess.)368

Once we know the upper bound ∆i on the absolute value |∆xi| = |x̃i − xi| of each369

measurement error, then, based on the measurement result x̃i, the only information we370

gain about the actual (unknown) value xi of the corresponding quantity is that this value371

belongs to the interval [xi, xi]
def
= [x̃i − ∆i, x̃i + ∆i]. Because of this fact, such a situation372

is known as interval uncertainty.373

Is the corresponding distribution Gaussian? If we carefully eliminated all major374

sources of measurement error, then only small factors remain that affect the measure-375

ment error. Thus, due to the Central Limit Theorem, we can safely conclude that the376

distribution of the measurement error is close to Gaussian. Will that help? Not really:377

since we did not do the calibration, we do not know what is the bias. In principle, the378

bias can take any value from −∆i and ∆i, so the fact that we have a normal distribution379

will not decrease the interval of uncertainty.380

Uncertainty quantification: case of interval uncertainty. Under interval uncertainty,
the only thing we can conclude about the value y = f (x1, . . . , xn) that we would have
obtained if we used the actual (unknown) values of the quantities xi is that it belongs
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to the range [y, y] of possible values of the function f when xi are in the corresponding
intervals:

[y, y] = { f (x1, . . . , xn) : xi ∈ [xi, xi] for all i}.

The problem of computing this interval is known as the problem of interval computation;381

see, e.g., [23,24].382

In general, this problem is NP-hard [25] – which means that, unless P = NP (which383

most computer scientists do not believe to be possible), no feasible algorithm is possible384

for solving all particular cases of this problem. However, in the linearized case, a feasible385

algorithm is possible. Indeed, since the expression ∑
i

ci · ∆xi is linear (thus monotonic) in386

the variables ∆xi, its largest value is attained:387

• for ci > 0, when the value ∆xi is the largest, i.e., when ∆xi = ∆i, and388

• for ci < 0, when the value ∆xi is the smallest, i.e., when ∆xi = −∆i.389

Thus, the largest possible value ∆ of ∆y is equal to

∆ =
n

∑
i=1
|ci| · ∆i.

Similarly, one can easily show that the smallest possible value of ∆y is equal to −∆.390

How to estimate uncertainty in the interval case. How can we compute this sum ∆?391

We can directly use this formula – i.e., use numerical differentiation to compute all the392

partial derivatives ci and then compute the sum. However, as we have mentioned earlier,393

in many practical situations, this approach is not realistic. What can we do?394

Another limit distribution comes to the rescue. As we have mentioned, the conver-
gence to a normal distribution only happens under certain conditions. In other cases,
we may have convergence to other so-called infinitely divisible distributions [2]. One of
such distributions is the Cauchy distribution, in which the probability density ρ(x) has
the following form:

ρ(x) = const · 1

1 +
( x

∆

)2 ,

for some parameter ∆.395

An important feature of the Cauchy distribution is that if we have several inde-
pendent Cauchy distributed random variables ri with parameters ∆i, then their linear
combination ∑

i
ci · ri is also Cauchy distributed, with parameter ∆ = ∑

i
|ci| · ∆i – which

is exactly the value that we want to compute. This feature leads to the following Monte-
Carlo method for computing ∆: we emulate, certain number of times K, measurement
errors δx(k)i which are Cauchy distributed with paremeters ∆i, and compute the differ-
ences

δy(k) = ỹ− f
(

x̃1 − δx(k)1 , . . . , x̃n − δx(k)n

)
.

Then, due to the above feature, the differences δy(k) are Cauchy distributed with the396

desired parameter ∆. Thus, to a sample of K values, we can apply, e.g., the maximum397

likelihood method [2], and thus estimate ∆ with accuracy ≈ 1/
√

K. Similarly to the case398

of normal distributions, this drastically speeds up computations: if we want to estimate399

∆ with relative accuracy 20%, it is sufficient to call the algorithm f 25 times – which is400

much smaller than thousands of times needed for exact estimation.401

This method has been successfully used in many applications; see, e.g., [26].402

Comment. Note that, in contrast to many simulation techniques, the use of Cauchy403

distribution in interval-related uncertainty quantification is not a realistic simulation:404

• the actual measurement error is always located inside the interval [−∆, ∆], while405
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• the Cauchy-distributed random variable has a non-zero probability to be anywhere,406

in particular, outside the interval.407

3.3. What If We Have No Information about Probabilities408

Formulation of the problem. What if we know that the disturbance x = (x1, . . . , xn)409

is a joint effect of several independent small ones: x = x(1) + . . . + x(N), where about410

each component x(i), we only know the set X(i) of its possible values – and we do not411

have any information about probabilities of different points within each set. The only412

constraint is that all the points from each set X(i) are small, i.e., that for some small413

values ε > 0, the length
∥∥∥x(i)

∥∥∥ of each vector x(i)) ∈ X(i) does not exceed ε. We will call414

such sets ε-small.415

In this case, the set X of all possible values of the sum x is the set of all possible416

sums x(1) + . . . + x(N), where x(i) ∈ X(i) for all i. In mathematics, the set of all such417

sums is known as the Minkowski sum of the sets X(i). The Minkowski sum is usually418

denoted by X(1) + . . . + X(N).419

What can we say about such set X?420

1-D case. The 1-D case n = 1 was studied in [27]. This paper showed that if a set X is the421

Minkowski sum of several ε-small closed sets, then it is ε-close to some interval I = [a, b],422

i.e.:423

• every point from the set X is ε-close to some point from the interval I, and424

• every point from the interval I is ε-close to some point from the set X.425

In the limit ε→ 0, we conclude that the Minkowski sum tends to the interval.426

To be more precise, the following results were proven:427

Theorem 1. If a set S ⊆ IR is a Minkowski sum of δ−small closed sets, then S is δ-close to an428

interval.429

Theorem 2. If a set S ⊆ IR can be, for every δ > 0, represented as a Minkowski sum of finitely430

many δ-small closed sets, then S is an interval.431

Comment. This limit theorem is similar, in formulation, to the Central Limit Theorem432

and its generalizations: it shows that if a quantity can be represented as the sum of433

many small components, then the set of all possible values of this quantity is close to an434

interval – and the smaller the components, the closer is the resulting set to an interval.435

Similarly to the fact that the original Central Limit Theorem explains the real-life436

ubiquity of normal distributions, this limit theorem explains the ubiquity of interval437

uncertainty; see, e.g., [21,23,24].438

General case. It is well known that every convex set X containing 0 can be represented,439

for every ε > 0, as a Minkowski sum of ε-small sets: indeed, it is sufficient to take440

X(i) = N−1 · X for a sufficiently large N, then:441

• the inclusion X ⊆ X(1) + . . . + X(N) follows from the fact that each element x can442

be represented as the sum x = N−1 · x + . . . + N−1 · x; and443

• the opposite inclusion X(1) + . . . + X(N) ⊆ X follows from the fact that the set X is444

convex and thus, once the elements x(1), . . . , x(N) belong to this set, their convex445

combination N−1 · x(1) + . . . + N−1 · x(N) also belongs to X.446

Whether the opposite is true – i.e., whether only convex sets can be represented as sums447

of small sets – remained an open problem. This problem – first formulated in [27] – was448

resolved in [28], where the following result was proven:449

Theorem 3. If a set X ⊆ IRn can be represented, for each ε > 0, as a Minkowski sum of ε-small450

closed sets, then this set X is convex.451

To be more precise, this paper proved the following result:452

Theorem 4. For every γ > 0, if a set X ⊂ IRn of diameter < 1 is δ-close to a Minkowski sum of453

sets of diameter ≤ ε, then X is γ-close to a convex set, for δ = γ/3 and ε = γ2/(20n).454
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Comment. This limit theorem explains the ubiquity of convex set in real-life problems.455

This is very good news, since it is known that convexity makes many computational456

problems easier to solve; see, e.g., [29].457

3.4. Important Open Questions458

What if we only have partial information about probabilities? In the above, we first459

considered cases where we know the probability distributions of the aggregated factors460

before moving to those in which when we only know the ranges, and we have no461

information about the probability of different values from these ranges. These are two462

extreme situations – either we know everything about the probabilities, or we have no463

information about these probabilities at all. In practice, we often have intermediate464

situations, when we have partial information about the probabilities. It is therefore465

desirable to extend the limit results from both extreme cases to the such intermediate466

situations as well.467

Possible approach and natural generalizations of the Central Limit Theorem. When468

we know all the probabilities, then for uncertainty quantification, we can use Monte-469

Carlo approach with normal distributions. When we only know the upper bounds, we470

can use Cauchy distributions. What if for some components, we know the probabilities,471

and for others, we only know bounds? The resulting random variable is the sum of two472

partial sums, for which the first partial sum can be handled by the normal distribution,473

while the second partial sum can be handled by the Cauchy distribution. In this case,474

it seems reasonable to use the distributions corresponding to the sum of normally and475

Cauchy distributed random variables.476

The family of such distributions is also a natural limit – the limit of sums in which477

the first partial sum tends to normal distribution and the second partial sum tends to478

the Cauchy one. Such mixed distributions are not covered by the usual limit theorems,479

which only consider 2-parametric limit families of probability distributions: e.g., a480

normal distribution is determined by two parameters – the mean and standard deviation481

of the normal distribution. Sums would require more parameters: we need mean and482

standard deviation of the normal part and the parameter ∆ of the Cauchy part.483

Possible generalizations of the traditional limit theorems to such multi-parametric484

families have been analyzed in [30]. It turns out that, in general, in this case, the resulting485

distribution is equivalent to the distribution of the sum of several different infinitely486

divisible distributions: e.g., to the sum of normally and Cauchy distributed variables. So487

maybe other distributions of this type can be used for uncertainty quantification in other488

cases when we only have partial information about probabilities?489

What if we are interested in the extreme case? Very often, we are interested in the
extreme case: e.g., when we design a bridge, we want it to withstand the strongest
possible winds that can happen in this area. In such situations, we are interested not
in the summary effect of several random variables, but rather in the largest value
x = max(x1, . . . , xn) of several random variables xi – e.g., variables describing the wind
on different days. When all these variables are identically distributed, then, similarly
to the Central Limit Theorem, we have a finite-parametric family of distributions that
represents the distribution of such extreme events; see, e.g.. [31–38]. Such results are
known as Extreme Value Theory. The most widely used result is that if the random vari-
ables xi are independent and identically distributed, then, under reasonable conditions,
as n increases, the cumulative distribution function of the maximum x of these variables
tends to one of the three distribution functions: Gumbel law

F(x) = exp
(
− exp

(
− x− b

a

))
,
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Fréchet law

F(x) = exp

(
−
(

x− b
a

)−α
)

for x > b,

and Weibull law

F(x) = exp
(
−
∣∣∣∣ x− b

a

∣∣∣∣α) for x < b.

This result is actively used in practice, e.g., in reliability engineering, to estimate the490

probability of an extreme event.491

The above result holds when all the variables xi are identically distributed. In reality,492

the distributions of the corresponding values xi are, in general, somewhat different. So,493

a natural question is: can we extend the Extreme Value Theory to such more general494

case? A similar generalization is possible for the Central Limit Theorem: it holds for the495

sum x = x1 + . . . + xn even when the distributions of different variables xi are different.496

However, no such extension is known for the Extreme Value Theory. The absence of such497

general extension is not caused by our inability to prove the corresponding result: it can498

be shown that, if we simply remove the restriction that all variables xi are identically499

distributed, then the set of all limit distributions is no longer finite-dimensional; see [39].500

Due to the practical importance of the Extreme Value Theory, an important question501

emerges: since in a general case, we have an infinite-dimensional family of limit distribu-502

tions, can we find specific cases when distributions are different but a finite-dimensional503

family of limit distributions is still possible?504

4. Dimensionality of Temporal Origin505

Case study. Let us consider the case of a simple hardware sensor, in which the input
x – e.g., intensity of light – generates a signal that goes through multiple layers until it
produces the final electric signal. When passing through these layers, the signal under-
goes a sequence of transformations. These transformations are, in general, nonlinear. In
mathematical terms, this means that the resulting transformation f (x) of the original
real value x to the 1-D sensor output f (x) is a composition of several different nonlinear
functions

f (x) = fn( fn−1(. . . f2( f1(x)) . . .)).

We can consider the sensor as a whole, with the transformation function f (x). We506

can divide it into several layers and consider the overall value-to-signal transformation507

f (x) as a composition of transformations corresponding to different layers. Each of these508

layers can be viewed as several sub-layers, so the corresponding value n can be very509

large – and transformations fi(x) corresponding to all these very thin sub-layers are510

close to identity fi(x) ≈ x.511

In the Central Limit Theorem, we took into account that the random variable x is512

equal to the sum x = x1 + . . . + xn of a large number of small independent random513

variables, and we used the fact that under reasonable conditions, in the limit when n→514

∞, the distribution of this sum tends to a distribution from a known finite-parametric515

family – namely, to a normal distribution. The limit means that when n is large, the516

distribution of the sum x is close to Gaussian.517

In our case, we consider a composition of a large number n of functions fi(x)518

which are close to identity. It is reasonable to look for situations in which, under some519

conditions, when n increases, such compositions would also tend to functions from some520

finite-parametric family. How can we describe the corresponding limit functions?521

Let us formulate this idea in precise terms. As we have mentioned earlier, in this paper,522

we do not focus on conditions when there is a convergence, we only focus on the resulting523

limit. In line with this approach, let us assume that we have a finite-parametric family F524

of limit functions.525

If we have two sequences of transformations:526

• a sequence fi whose compositions tend to some function f ∈ F and527
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• a sequence gi whose composition tends to some function g ∈ F,528

then in the case when we first apply all fi-transformations and then all gi-transformations,529

then the resulting limit function g( f (x)) should also belong to the family F. Thus, the530

desired family F of all possible limit functions should be closed under composition.531

Most transformations in sensors are reversible. So, if we limit ourselves to such532

transformations, and instead of first applying f1, then f2, etc., we change the direction533

of signal processing and first apply f−1
n , then f−1

n−1, etc., then, in the limit, instead of the534

original limit function f we will get the inverse function f−1(x). So, the class F of all535

possible limit functions should contain, with each function f , its inverse function as well.536

So, the class F must be closed under composition and inverse. Such classes are known537

as transformation groups.538

Also, linear transformations are ubiquitous. Thus, it make sense to consider finite-539

parametric groups that contain all linear transformations. What are these groups?540

Enter Norbert Wiener. Interestingly, the answer to this question is related to Norbert541

Wiener, the father of cybernetics. As he describes in his pioneering monograph [40] on542

cybernetics, when he started working on engineering problems, at first, he trusted exact543

mathematical models much more than vague biological analogies. And then, when544

he came up with a draft design of a system for automatic vision, a neurophysiologist545

colleague Arturo Rosenblueth – who saw the corresponding picture – asked him with546

surprise since when Wiener has become interested in human vision: because it turned547

out that what Wiener came up with after many thoughts and tries was exactly the scheme548

implemented in human vision. This experience lead to Wiener’s idea of cybernetics, a549

science studying both engineering and biological systems, in which one of the main550

ideas is that since we the humans are the product of billion years of improving evolution,551

our biology should be close to optimal – and thus simulating this biology can be very552

helpful in engineering.553

In some cases, this optimality was indeed confirmed. In some other cases, Wiener554

became so confident in the related optimality that he made several mathematical hy-555

potheses based on this confidence. For example, he learned, from Dr. Rosenblueth, that556

when we get closer and closer to an object, there are several clearly distinct phases557

in our visual perception (which, by the way, again fits with the above explanation of558

discreteness):559

• When the object is very far, all we see is a formless blurb – in other words, ob-560

jects obtained from one another by arbitrary smooth transformations cannot be561

distinguished.562

• When the object gets closer, we can detect whether it is smooth or has sharp angles.563

We may see a circle as an ellipse, a square as a rhombus (diamond). At this stage,564

images obtained by a projective transformation are indistinguishable.565

• When the object gets even closer, we can detect which lines are parallel but we may566

not yet detect the angles. For example, we are not sure whether what we see is a567

rectangle or a parallelogram. This stage corresponds to affine transformation.568

• Then, we have a stage of similarity transformations – when we detect the shape but569

cannot yet detect its size.570

• Finally, when the object is close enough, we can detect both its shape and its size.571

Each stage can be thus described by an appropriate transformation group. So, Wiener572

conjectured that if there was a group intermediate between, e.g., all projective and all573

continuous transformations, our vision mechanism – the result of millions of years of574

improving evolution – would have used it. Thus, he formulated a hypothesis that such575

intermediate transformation groups are not possible [40].576

Many mathematicians did not take this hypothesis too seriously – while they577

appreciated Wiener’s engineering ideas, they thought that he was going too far in his578

analogies. But other mathematicians took it seriously – and, two decades after the579

first edition of Wiener’s book, they came up with a formal proof that, indeed, under580
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reasonable conditions, there is only one transformation group that contains all linear (=581

affine) transformations and some non-linear ones: namely, the group of all projective582

transformations [41,42].583

The general proof is very complicated – e.g., the paper [42] consists of more than
100 pages of dense mathematics. But good news is that at present, we are only interested
in the transformations of 1D signals. In this case, projective transformations are nothing
else but fractional-linear ones

f (x) =
a · x + b
c · x + d

,

and the corresponding proof can be shortened to a few pages; see, e.g., [43,44].584

So, we arrive at the following conclusion.585

So what are the limit transformations? We have shown that limit transformations form586

a finite-parametric transformation group that contains all linear transformations, and587

that all transformations from such a group are fractional linear – with linear ones being588

a particular case.589

Thus, we conclude that all limit transformations are fractional-linear.590

A similar conclusion can be made about all possible reasonable transformations. In-591

stead of looking for limit transformations, we can consider a different problem: to592

describe a class of all transformations which are, in some sense, reasonable. Linear trans-593

formations are reasonable: shift corresponds to the changing the starting point and a594

multiplication by a number corresponds to changing a measuring unit. A good example595

of both transformations are transformation between Celsius and Fahrenheit temperature596

scales.597

It is also natural to conclude that a composition of two reasonable transformations is598

reasonable, and that a transformation which is inverse to a reasonable transformation is599

also reasonable. If we want to use computers to deal with reasonable transformations, it600

also makes sense to require that the reasonable transformations form a finite-parametric601

family – since in a computer, we can only stored finitely many parameter values.602

Thus, the class of all reasonable transformations forms a finite-parametric trans-603

formation group containing all linear transformations. So, we conclude that every604

reasonable transformation is fractional linear.605

What are the implications for neural networks. Artificial neural networks – a perfect606

example of Wiener’s belief that emulating biological systems can be beneficial – are607

formed of neurons. In a neuron, first, we form a linear combination x of the inputs xi,608

and then we apply some non-linear transformation y = s(x) to this linear combination.609

In neural networks, this nonlinear transformation is known as an activation function.610

Which activation function should we use? The first nonlinear neurons use sigmoid
activation function

s(x) =
1

1 + exp(−x)
,

because, in the first approximation, this is how signals are processed in biological611

neurons; see, e.g., [14]. This activation function worked very well – much better than612

other activation functions that have been tried. This activation function is still often used613

in some layers of deep neural networks [15], where they are also very successful. How614

can we explain this success?615

A possible explanation comes from the fact that, as we have mentioned earlier, all
inputs come with noise. The simplest case is when, for each measurement, we just have a
constant noise ni = const, when instead of the actual values xi, the measurement results
are shifted by this value ni, to xi + ni. As a result, the linear combination x is also shifted
by some constant n (which is the similar linear combination of noises ni):

x → x + n.
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We do not know the exact value of this noise – if we knew, we could simply subtract616

it from all the measured values. It is therefore reasonable to require that the result of617

applying the activation functions should be insensitive to this noise as much as possible.618

Of course, we cannot simply require that s(x + n) = s(x) for all x and n – this619

would imply that the function s(x) is a constant that does not depend on the input at620

all. This makes sense: for example, the formula d = v · t showing that the distance621

can be obtained by multiplying velocity and time does not change when we change622

the unit of time, e.g., from hours to seconds. However, this invariance does not mean623

that the formula remains exactly the same when we change the unit of time: to keep624

the formula the same, we also need to apply an appropriate transformation to velocity625

as well: namely, replace the values in km/h with a value in km/sec. Similarly here,626

a natural idea is to require that if we apply a shift x → x′ = x + n to the input, the627

formula remains the same if we apply an appropriate transformation to y as well, i.e.,628

that y′ = s(x′), where y′ = T(y) for some reasonable transformation T.629

In other words, we conclude that for every value n, there exists some reasonable
transformation Tn for which s(x′) = Tn(y). Here, x′ = x+ n, and y = s(x), so s(x+ n) =
Tn(s(x)). We have already concluded that reasonable transformations are fractional
linear, thus we have

s(x + n) =
a(n) · x + b(n)
c(n) · x + d(n)

for some values a(n) through d(n). To describe all the functions s(x) that have this630

property, we can differentiate both side of this equation by n and take n = 0. The631

resulting differential equation can then be explicitly solved; see, e.g., [43,45,46]. The632

generic monotonic solution to this equation indeed differs from the sigmoid activation633

functions only by linear transformations of x and y.634

This explains why the sigmoid activation function indeed works well in many635

application problems.636

Comment. Of course, this does not mean that this activation function works best in all637

practical applications. For example, in most layers of deep neural networks, a different638

activation function s(x) = max(0, x) – known as rectified linear activation function –639

works much better. Interestingly, similar invariance ideas can explain the use of the640

rectified linear activation function – as well many other empirically successful features641

of deep learning algorithms; see, e.g., [46].642

5. Conclusions643

In this paper, we showed that limit theorems – similar to the Central Limit Theorem644

from statistics – make analysis of complex systems easier – i.e., lead to the blessing-of-645

dimensionality phenomenon. We showed that this simplification happens for all the646

aspects of these systems:647

• for the corresponding transformations – as shown, e.g., by the description of all648

possible limit and/or reasonable transformations, and by the resulting theoretical649

explanation of the efficiency of sigmoid activation functions;650

• for the system’s uncertainty – as shown, e.g., by the use of limit distributions such651

as normal and Cauchy to make uncertainty quantification more efficient, and by the652

use of limit theorems to explain the ubiquity of interval uncertainty, and653

• the desired result of the system’s analysis – as shown, e.g., by a limit-theorem-based654

explanation of why it is usually possible to meaningfully classify objects into a small655

finite number of classes.656
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