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Additional Spatial Dimensions Can Help Speed
Up Computations

Luc Longpré, Olga Kosheleva, and Vladik Kreinovich

Abstract While we currently only observe 3 spatial dimensions, according to mod-
ern physics, our space is actually at least 10-dimensional. In this paper, on different
versions of the multi-D spatial models, we analyze how the existence of the addi-
tional spatial dimensions can help computations. It turns out that in all the versions,
there is some speed up – moderate when the extra dimensions are actually compact-
ified, and drastic if extra dimensions are separated by a potential barrier.

1 Computations and Space Dimensions: How They Are Related
and What Are the Remaining Open Problems

Many computational problems require too much computation time. It is known
that many practical computational problems are NP-hard; see, e.g., [4, 6]. This
means, crudely speaking, that unless it turns out that P = NP (which most com-
puter scientists do not believe to be possible), any algorithm that always solves the
corresponding problem will require, at least for some inputs of reasonably large
size, an unrealistically long time to solve – e.g., time larger than the lifetime of the
Universe.

Parallelization can help – at least to some extent. If for a person, some task takes
too much time, this person can (and does) ask for help. When two or more people
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work on some task, they can perform it faster. Similarly, when a certain compu-
tational task requires too much time on a single computer, a natural way to speed
up computations is to divide the original task between several computers – i.e.,
to parallelize computations. Many modern high-performance computers consists of
thousands of processors working in parallel on the same task, and for many compu-
tational tasks, this indeed leads to a drastic speed-up.

Fundamental limitations of parallelization speed-up. In spite of the numerous
successes of parallel computations, in general, parallelization is not a panacea: this
idea has limitations. Some of these limitations are technical. These limitations will
hopefully be overcome in the future. However, as we will show, there are also fun-
damental limitations on how much speed-up can be achieved by parallelization; see,
e.g., [5].

Indeed, let us assume that we have a parallel computer that finishes its computa-
tions in time Tpar. Let us show how we can simulate its computations sequentially.
According to modern physics (see, e.g., [1, 8]), the speed of all processes is bounded
by the speed of light c. During the time Tpar, the information from the processors
must reach the user. This means that the processors that participate in this computa-
tion must be located within the distance R def

= c ·Tpar, i.e., in geometric terms, inside
the sphere of radius R centered at the user location.

The overall volume of this area is equal to

V =
4
3
·π ·R3 =

4
3
·π · c3 ·T 3

par.

Thus, if we denote by ∆V the smallest possible volume of a single processor, then
the number of processor Nproc that can fit inside this sphere cannot exceed the value

Nproc ≤ Nmax
def
=

V
∆V

=
4

3 ·∆V
·π · c3 ·T 3

par. (1)

Whatever we can compute in parallel on Nproc processors, we can also compute
sequentially, if we first simulate all the first steps of all the processor, then all the
second steps of all the processors, etc. This way, each step of the parallel com-
puter requires Nproc steps of the sequential computer. Thus, what was computed on
a parallel computer in time Tpar can be computed on a sequential computer in time
Tseq = Nproc ·Tpar.

Due to the inequality (1), we have

Tseq ≤
4

3 ·∆V
·π · c3 ·T 3

par ·Tpar =C ·T 4
par, (2)

where we denoted
C def
=

4
3 ·∆V

·π · c3.

So, if the fastest time that it takes for a sequential computer to solve a problem is T ,
the fastest time Tpar that this same problem can be solved on a parallel computer is
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bounded by the inequality T ≤ Tseq ≤C ·T 4
par, thus

Tpar ≥C−1/4 ·T 1/4. (3)

This implies that by using parallelization, we can speed up, at best, to the 4-th root
of the sequential time. This is good, but not ideal: if the original sequential time T
was exponential – as for NP-hard problems – the parallel time is still exponential.

Extra dimensions: a brief reminder. The above argument assumes that we live in
s 3-dimensional space. However, according to modern physics, the requirement that
quantum field theory is consistent implies that the dimension of space is at least 10;
see, e.g., [2, 7, 8].

Resulting challenge and what we do in this paper. A natural question is: how does
the presence of these extra spatial dimensions affect computations?

This is the question that we study in this paper.

2 First (Naive) Idea and Why It Is Naive

A seemingly natural idea. At first glance, the situation is straightforward: if instead
of 3 spatial dimensions we have d > 3 dimensions, then the volume of the area
inside the sphere of radius R is equal to V = cd ·Rd for some constant cd . Taking
into account that R = c ·Tpar, we conclude that V = cd · cd ·T d

par. Thus, the number
Nproc of processors is bounded by the number

Nproc ≤ Nmax
def
=

V
∆V

=
cd

∆V
· cd ·T d

par.

Hence, this parallel computation can be simulated on a sequential computer in time

Tseq ≤ Nproc ·Tpar =
cd

∆V
· cd ·T d

par ·Tpar =Cd ·T d+1
par ,

where this time
Cd

def
=

cd

∆V
· cd .

So, instead of the previous rather-high lower bound Tpar ≥ const ·T 1/4
seq , we get a

much better lower bound Tpar ≥ const ·T 1/(d+1)
seq , with d ≥ 10.

Why this idea is naive. The above result looks good, but it is based on the simplified
idea that extra spatial dimensions are similar to the current three ones. In reality, the
fact that we currently observe only three dimensions means that different spatial
dimensions are different.

There are two possible approaches to how to explain that other dimensions are
not yet observable. In this section, we describe these two approaches, and in the
following sections, we analyze how these approaches affect computations.
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First approach: actual compactification. The first natural approach is to conclude
that since we cannot observe any changes in other spatial dimensions, this means
that these dimensions are very small in size – e.g., that each of these dimensions
represents not a line, but a circle of a small radius.

Second approach. The second natural approach is to assume that while all our
processes are happening in a very small fragment of the additional dimensions. these
dimensions actually have larger size – only due to some physical reasons, we cannot
leave this small fragment. An analogy is when we are in a narrow valley between
two mountain ranges: in principle, we can get out of this valley, but this requires
climbing high mountains – and for that, we will need lots of energy and probably
special equipment, which few of us have.

What we will do now. Let us see how both physically realistic versions of extra
spatial dimensions can affect computations.

3 First Approach: How Actual Compactification Affects
Computations

It all boils down to computing the volume. The above arguments about the limits
to parallelization were based on computing the volume V of the inside of the sphere
of radius R = c ·Tpar, where c is the speed of light and Tpar is the computation time.
In the analysis of the 3-D situation, we used the formula for the volume of a sphere
in the 3-D space. To see how the resulting calculations will change in the multi-D
space, we need to find, for this space, what is the corresponding volume V .

Let us compute this volume. To find this volume, let us recall that the distance
between the two points x = (x1,x2, . . .) and y = (y1,y2, . . .) in the multi-D space is
equal to

d(x,y) =
√

(x1 − y1)2 +(x2 − y2)2 +(x3 − y3)2 +(x4 − y4)2 + . . ..

For reasonable computation time Tpar, the radius R = c · Tpar is large, and thus, is
much larger than the size se of each extra dimension: remember that this size is so
small that we do not notice these extra spatial dimensions. So, the terms

(x4 − y4)
2, . . .

corresponding to differences in extra dimensions – and which are of order s2
e – are

much much smaller than the terms (x1 − y1)
2 +(x2 − y2)

2 +(x3 − y3)
2 describing

the distance in the 3-D space. Hence, with high accuracy, we can safely assume that
the distance between the two multi-D points is equal to the distance between their
3-D parts:

d(x,y)≈ d3(x,y)
def
=

√
(x1 − y1)2 +(x2 − y2)2 +(x3 − y3)2.
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Therefore, the set of all the points which are at distance ≤ R from the user can be
described as follows: we take all the points (x1,x2,x3) from the corresponding 3-D
sphere, and for each of these points, we consider all possible combinations (x4, . . .)
of additional spatial coordinates.

The size of each additional coordinate is se, and in a d-dimensional space, there
are d − 3 additional spatial coordinates. Thus, the overall volume of the additional
part of sd−3

e , and the overall volume of the sphere in d-dimensional space is equal

to
4
3
·π ·R3 · sd−3

e .

How many processors can we fit now? The multi-D volume ∆V of a processor
can be obtained by multiplying its 3-D volume ∆V3 by its volume ∆Ve in the extra
dimensions. If the size of the processor in additional dimensions is se, then we get
the exact same number of processors as in the 3-D case, no gain at all from the
existence of additional spatial dimensions.

However, if we manage to decrease the size of a processor in extra dimensions to
less than se, so that the volume ∆Ve of a processor in the extra dimensions is smaller
than sd−3

e , then, by dividing the overall multi-D volume by the volume of a single
processor, we get the new value for the number of processors:

Nproc ≤ Nmax =
V

∆V
=

4
3
·π ·R3 · sd−3

e

∆V3 ·∆Ve
=

4
3 ·∆V3

·π ·R3 · sd−3
e

∆Ve
.

Since we consider the case when ∆Ve < sd−3
e , this number of processors is larger

than the corresponding 3-D number of processors

4
3 ·∆V3

·π ·R3

by a factor of

C =
sd−3

e

∆Ve
> 1.

Conclusion for this approach. In the first approach to multi-D space-time – when
all extra dimensions are actually compactified – after an appropriate level of minia-
turization, we will be able to get a C times increase in number of processors that we
can fit into each area – and thus, in principle, a constant times computation speed-up.

Comment. This is not as spectacular as we could imagine based on the naive ap-
proach, but any speed up is good.
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4 Second Approach: How It Affects Computations

At first glance. If we limit ourselves to the same small area of extra dimensions in
which all observable processes take place, then we get the exact same situation as
in the first approach – and thus, we can get the same constant times increase, where
the constant depends on how successful we are in minituarizing our processors.

But now we have another option. However, in the second approach, we do not
have to limit ourselves to the small area that contains all observable processes: there
are other areas as well, it is just that these areas are difficult to reach: since going
there requires a lot of energy, thus preventing usual particles from going there.

What if we apply this considerable amount of energy and reach these additional
areas? What do we gain with respect to computations?

First gain: all the promises of the naive approach turn out to be true. If we
are allowed to use a significant area in extra dimensions, then we can have all the
advantages promised by the above-described naive approach: namely, instead of
being able to fit ∼ T 3

par processors into an area of radius R = c · Tpar, we can fit a
much larger amount of ∼ T d

par processors. Thus, instead of the possibility to reduce

the sequential computation time Tseq to Tpar ∼ T 1/4
seq , we can get a much more drastic

speed-up Tpar ∼ T 1/(d+1)
seq .

Interestingly, there is an additional speed-up. The fact that all the processes are
limited to a narrow area of values of extra spatial dimensions means, in effect, that
this limitation is the property of the underlying space-time, not of any specific phys-
ical field. In other words, this means that the space-time is not as flat as the space-
time of our usual 3D space – that would have enabled particles to easily go in all
possible spatial directions – but rather curved.

According to General Relativity theory – the theory that describes curved space-
time in modern physics – in a curved space-time, free particles move along geodesic
lines, i.e., lines in which the resulting proper time ∆s between the each two locations
is the shortest possible. In terms of coordinate time t, this overall proper time can be

computed by adding up proper times ds =
ds
dt

·dt corresponding to different parts of

the trajectory, i.e., as ∆s =
∫ ds

dt
dt. According to General Relativity, the ratio

ds
dt

is, in general, smaller than 1: in a gravitational field, all the processes slow down,
and if this field is very strong – e.g., near a black hole – then it can slow down
drastically: when the outside world measures 10 years, people near the black hole
will only count several months.

In [3], we considered possible computational consequences of this effect in the
3D space. Interestingly, in the second approach to the multi-D cases, we have an
additional possibility to use this effect. Namely, the fact that for all the particles, the
optimal path is by going via the narrow zone of observable processes means that in

this zone, the ratio
ds
dt

is much smaller than in the neighboring zones – just like the
fact that the fastest way to get from two points in the US usually involves taking a
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freeway is an indication that the allowed speed on the freeway is larger than on all
other roads.

For example, if we are in the vicinity of a gravitating body, where the ratio
ds
dt

is smaller than 1 – and which is thus an analogue of a freeway – particles will tend
to move close to this vicinity, which we observe as gravitational attraction. The

stronger the gravitational field, the smaller the ratio
ds
dt

and thus, the more probable
it is that the particles will bend towards this vicinity – so the larger the observed
gravitational attraction.

In our multi-D case, the fact that in the neighborhood of our zone the value of the
ratio is much larger than in the zone itself means that during the same time ∆ t, the
proper time ∆s in this neighborhood will be larger than in our zone. In other words,
during the same coordinate time, the processor located in the neighborhood will be
able to perform more operations than a processor that stays in our zone. Thus, we
will get an additional speed-up.

Conclusion for this approach. In the second approach,

• not only we can have more processor working in parallel – by placing additional
processors outside the narrow zone where the observable processes occur,

• but also the processors placed outside this zone will compute much faster than
the ones in the zone, which will lead to an additional speedup.
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