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Dimension Compactification Naturally Follows
from First Principles

Julio C. Urenda, Olga Kosheleva, and Vladik Kreinovich

Abstract According to modern physics, space-time originally was of dimension 11
or higher, but then additional dimensions became compactified, i.e., size in these
directions remains small and thus, not observable. As a result, at present, we only
observed 4 dimensions of space-time. There are mechanisms that explain how com-
pactification may have occurred, but the remaining question is why it occurred. In
this paper, we provide two first-principles-based explanations for space-time com-
pactification: based on Second Law of Thermodynamics and based on geometry and
symmetries.

1 Formulation of the Problem

What is dimension compactification. According to modern physics (see, e.g., [5,
9, 11]), the requirement that the quantum field theory be consistent implies that the
dimension of space-time should be at least 11. How can we combine this conclusion
with the fact that the observed space-time is only 4-dimensional?

A usual explanation is that while in the beginning, space-time may have had 11 or
more equally prominent dimensions, with time, most of these dimensions has been
compactified: i.e., the size in the direction of these additional dimension remains as
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small as the Universe was in its first moments, while other dimensions expanded to
the current astronomical sizes.

Compactification: how and why. There are several mechanisms that explain how
compactification could have happened. However, these mechanisms do not explain
why it happened.

In this paper, we provide arguments that compactification naturally follows from
first principle. We actually provide two first-principles explanations for space-time
compactification:

• an explanation based on the Second Law of Thermodynamics and
• an explanation based on geometry and symmetries.

2 Explanation Based on the Second Law of Thermodynamics

Second Law of Thermodynamics: a brief reminder. According to the Second
Law of Thermodynamics (see, e.g., [2, 11]), the entropy of the Universe (and of any
closed system) increases with time (or, in some cases, stays the same) – and there
is no limit to such increase, eventually we get closer and closer to the state with the
largest possible entropy.

What is entropy: a brief reminder. In general, the entropy is defined as [6, 10]:

S =−
∫

ρ(x) · ln(ρ(x))dx,

where ρ(x) is the probability distribution of the set of all possible micro-states.

How is entropy depending on dimension. In general:

• close points or close particles are strongly correlated, while
• distant particles are independent.

A simplified description of this phenomenon can be obtained if we assume that all
the points are divided into groups of nearby ones, so that:

• within each group there is a correlation, but
• between the groups there is no correlation.

It is known (see, e.g., [6]) that if we have several independent random processes,
then the overall entropy is equal to the sum of the entropies of these processes. Thus,
to find the overall entropy of the Universe in this approximation, it is sufficient to
compute the entropy corresponding to each group, and then add up the resulting
entropies.

How many points n are in each such group? Let us consider first the case when
we only consider immediate neighbors – i.e., points whose all coordinates different
from this one by no more then 1 appropriate unit of distance. In a coordinate system
in which a central particle is at the point (0, . . . ,0), each of d coordinates of an
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immediate neighbor is equal to −1, 0, or 1 – three options. So overall, we have
n = 3d points. If we consider neighbors of neighbors, we can have 5d points – and,
in general, n = ad for some a > 1.

This number clearly grows with the dimension d. So, when we go from a higher
dimension d to a lower dimension d′ < d, the number of neighbors decreases. This
means that:

• instead of the original group of size n in which all particles were correlated,
• we have several subgroups of smaller size, and there is no longer correlation

between different subgroups.

It is known – see, e.g., [6] – that if we know distributions corresponding to all
the subgroups, then the entropy of the overall distribution for the whole group is
the largest if and only if these subgroups are independent. Thus, when we divide
a group in which all elements were correlated into smaller independent subgroups,
we increase entropy.

Since, according to the usual interpretation of the Second Law of Thermody-
namics, there are no limitations to the increase in entropy, eventually, we should
also encounter a decrease in spatial dimension as a way to increase entropy – and
this is exactly what compactification is about.

Comment. The above argument does not imply that compactification will stop at our
3 dimensions: it can go further, to having a 2- and even 1-dimensional space. Maybe
this is what is already happening in the Universe, with 1D superclusters of Galaxies;
see, e.g., [1, 7].

3 Explanation Based on Geometry and Symmetries

Our second explanation is based on a natural physical process. The original
distribution of matter was uniform. However, the uniform distribution is not stable:

• if at some point, due to fluctuations, the density becomes larger than at the neigh-
boring points,

• then this point start attracting matter from its neighbors – thus further increasing
its density.

As a result, you get a large disturbance.

Symmetries and statistical physics: general idea. The original distribution in a
d-dimensional space was invariant under shifts, rotations, and scaling (i.e., transfor-
mation xi → λ · xi).

According to statistical physics (see, e.g., [2, 11]):

• It is not very probably that from a highly symmetric state, we go straight into a
completely asymmetric one.

• Usually, the most probably transition is to a state that preserves as many symme-
tries as possible.
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So, we expect the shapes of the disturbances to have some symmetries.

Analysis of the problem. What is the shape that has the largest number of sym-
metries – i.e., for which the dimension of the corresponding symmetry group is the
largest?

If the shape is invariant with respect to all rotations in the d-dimensional space,
then it must consist of spheres, and a sphere has only rotations – so the dimension

of the corresponding symmetry group is
d · (d −1)

2
. Indeed, infinitesimal rotations

are described by asymmetric matrices which have exactly as many parameters. So,
in this case, the dimension of the symmetry group is

d2 −d
2

.

If the shape includes a (d − 1)-dimensional space, then we have d − 1 indepen-

dent shifts,
(d −1) · (d −2)

2
independent rotations, and 1 scaling, to the total of

d −1+
(d −1) · (d −2)

2
+1 =

d2 −d +2
2

,

which is larger than for the sphere.
If we have all (d −1)-dimensional rotations but not all shifts or scaling, then we

have fewer symmetries.
What if we only have rotations in a (d − 2)-dimensional space, to the total of

(d −2) · (d −3)
2

? We cannot have d−1 shifts, because this would lead to a (d−1)-
dimensional space. Thus, we can have no more than d −2 independent shifts. Even
if we have d −2 shifts and rotations, we will have

d −2+
(d −2) · (d −3)

2
+1 < d −1+

(d −1) · (d −2)
2

+1

independent symmetries.

Conclusion. The most probable result of a natural spontaneous symmetry violation
of a d-dimensional space is a (d − 1)-dimensional space. Since fluctuations con-
tinue, we will then get space of dimension d −2, etc.

This provides another explanation of why the original space has lost many of its
dimensions.

Comments.

• We have two explanations of the same phenomenon, but these explanations are
not contradicting each other – both are based on statistical physics, we just took
into account different aspects of it.

• The above idea of shapes motivated by symmetries has been used in physics –
e.g., it explains the existing shapes of celestial bodies; see, e.g., [3, 4, 8].
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