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Abstract

A recent book provides examples that a new
class of probability distributions and mem-
bership functions – called kappa-regression
distributions and membership functions –
leads, in many practical applications, to bet-
ter data processing results than using previ-
ously known classes. In this paper, we pro-
vide a theoretical explanation for this empiri-
cal success – namely, we show that these dis-
tributions are the only ones that satisfy rea-
sonable invariance requirements.

Keywords: Kappa-regression distributions,
Kappa-regression membership functions, In-
variance

1 Formulation of the Problem

Empirical facts. Recent results have shown (see [3]
and references therein, see also [2]) that in many prac-
tical situations, probability distributions with the cu-
mulative distribution function of the type

F(x) = Prob(X ≤ x) =
1

1+C ·
(

b− x
x−a

)λ
, (1)

known as kappa-regression distributions, provide a
very good description of the data and very good data
processing results – better than previously proposed
families. Similarly, fuzzy processing that uses the
membership functions

µ(x) =
1

1+C ·
(

b− x
x−a

)λ
(2)

leads, in many practical situations, to very good results
– better than other tested membership functions.

Of course, these distributions are not a panacea – in
many other practical situations, other families of prob-
ability distributions – e.g., Gaussian – provide a much
better fit. However, the very fact that this not-well-
known family of distributions provides a good descrip-
tion of many practical situations is worth our attention.

Challenge. How can we explain these empirical re-
sults?

In this paper, we provide an explanation for these re-
sults, an explanation based on first principles.

2 Let Us Start with the Known Limit
Case

A known limit case. While the kappa-regression dis-
tributions themselves are new, in the limit, they co-
incides with several known probability distributions;
see [3]. One of such limit distributions is the logistic
distribution

F(x) =
1

1+C · exp(−k · x)
, (3)

which is also known to lead to many useful results.

So, before we explain why the general case of the
kappa-regression distribution is so successful, let us
first try to understand why this limit case has been very
successful.

Idea of invariance. In order to explain why logistic
distribution is successful in describing real-life phe-
nomena, let us recall how real-life phenomena are de-
scribed and explained in the first place, what are the
fundamental ideas behind these explanations.

Modern science – especially physics – has been very
successful, we can predict many events. But what is
the general basis for all these predictions? We observe
that the Sun goes up day after day, and we conclude
that in the similar situations, the Sun will go up again.
We observe, at different locations on the Earth, that if



you drop a pen, it will fall with the acceleration of 9.81
m/sec2, and we conclude that in similar situations, it
will fall down with the same acceleration. We observe,
in many cases, that mechanical bodies follow Newton’s
laws, and we conclude that in the similar situations, the
same laws will be observed.

In all these cases, we conclude that when we change
a situation to a similar one – e.g., by moving to a dif-
ferent location on Earth or to a different day, etc. –
the processes will remain similar. This idea that many
physical properties do not change if we perform certain
transformations is known as invariance. Invariances –
also called symmetries in physics – are indeed one of
the fundamental ideas of modern physics, to the extent
that many new theories – starting with the theory of
quarks – are proposed not by writing down differential
equations, but by describing the corresponding invari-
ances; see, e.g., [4, 9].

What are the simplest invariances? Some invari-
ances – e.g., the ones used in quark theory – are rather
complicated. Let us start with the simplest possible in-
variances.

These invariances are related to the fact that when we
write equations, we operate with numerical values of
the physical quantities, but to describe physical quanti-
ties by numbers, we need to select a measuring unit
and a starting point. For example, we can measure
time starting with Year 0 – as in the commonly used
calendar – or with any other moment of time; after the
French revolution, the new calendar started with the
year of the revolution as the first year. We can also
change a measuring unit – e.g., count days or months
instead of years.

In general, if you replace the original measuring unit
with a new unit which is c times smaller, then all nu-
merical values are multiplied by c: x→ c ·x. For exam-
ple, if when measuring lengths we replace meters with
centimeters, all numerical values will be multiplied by
100: 2 m social distance will become 2 ·100 = 200 cm.

Definition 1. By a scaling, we mean a transformation
(function) f (x) = c · x for some c > 0.

Similarly, if we replace the original starting point with
the one which is x0 units earlier, then all numerical val-
ues increase by x0: x→ x+ x0.

Definition 2. By a shift, we mean a transformation
f (x) = x+ x0 for some x0.

In many physical situations, there is no preferred start-
ing point, so we expect that the processes remain sim-
ilar if we change the starting point, i.e., if we replace
all numerical values x with shifted values x+x0. Simi-
larly, in many physical situations, there is no preferred

measuring unit, so we expect that the processes remain
similar if we replace the measuring unit, i.e., if we re-
place all numerical values x with re-scaled values c · x.

How can we apply these ideas to probability distri-
butions? Of course, if we change the units of one of
the quantities, then, to preserve the same equations, we
need to accordingly change the units of related quanti-
ties. For example, if we start with the formula d = v · t
that the distance is velocity times time, and we change
the unit for time from hours to seconds, then, to pre-
serve the formula, we need to corresponding change
the units for velocity: e.g., from km/h to km/sec.

In probability theory, there is a natural way to change
probabilities: the Bayes formula, according to which if
we have a new observation E, then the previous prob-
ability P0(H) of a hypothesis H changes to the new
value

P(H |E) = P(E |H) ·P0(H)

P(E |H) ·P0(H)+P(E |¬H) ·P0(¬H)
=

P(E |H) ·P0(H)

P(E |H) ·P0(H)+P(E |¬H) · (1−P0(H))
=

P0(H)

P0(H)+ r · (1−P0(H))
, (4)

where we denoted

r def
=

P(E |¬H)

P(E |H)
; (5)

see, e.g., [5, 8].

So, a natural idea is to require that if we apply a rea-
sonable transformation to x – e.g., change the starting
point or change the measuring unit – then the proba-
bility distribution will change according to the Bayes
formula (4).

Definition 3. We say that cumulative distribution func-
tions F(x) and G(x) are equivalent if for some real
number r, we have:

G(x) =
F(x)

F(x)+ r · (1−F(x))
.

Mathematical comment. Strictly speaking, we should
have written G(x) ·(F(x)+r ·(1−F(x))) = F(x). This
is almost always equivalent to our formula, except for
the case when r = 0 and F(x) = 0, when the ratio of the
right-hand side turns into 0/0. For these two values –
and in similar cases in the following text – we assume
(following the above strict form of the corresponding
equality) that the equality holds for any G(x).

In this assumption, we follow the usual mathematical
practice of assuming that the ratio 0/0 is considered



to be equal to any number: e.g., when we claim that
a2−b2

a−b
= a+b for all a and b.

Discission. The above notion of equivalence di-
vides all possible cumulative distribution functions
into equivalence classes. It is reasonable to call an
equivalence class invariant if this class does not change
under the corresponding transformation.

Definition 4. Let f (x) be a transformation. We say
that an equivalence class F of cumulative distribution
functions is invariant with respect to f (or, f -invariant,
for short) if this class does not change under this trans-
formation, i.e., if

{F( f (x)) : F ∈F}= F .

This definition can be equivalently described in terms
of the cumulative distribution functions from the f -
invariant equivalent class. For simplicity, we will
also call these cumulative distribution functions f -
invariant.

Definition 4′. Let f (x) be a transformation. We say
that a cumulative distribution function F(x) is invari-
ant with respect to f (or, f -invariant, for short) if the
functions F( f (x)) and F(x) are equivalent, i.e., if for
some real number r > 0, we have

F( f (x)) =
F(x)

F(x)+ r · (1−F(x))
.

What probability distributions satisfy this invari-
ance requirement? Let us analyze what are the prob-
ability distributions that satisfy this requirement.

Proposition 1. For each cumulative distribution func-
tion F(x), the following two conditions are equivalent
to each other:

• F(x) is invariant with respect to all shifts;

• F(x) is a logistic distribution, i.e., is described by
the formula (3).

Comment. This result is not new: it is based on the
known fact that shift invariance characterizes the ex-
ponential distribution. However, we decided to add an
explicit proof of this result to the paper, to prepare the
reader for our explanation of the kappa regression –
which is based on the same ideas.

Proof. It is straightforward to prove that every logistic
distribution is shift-invariant. Let us prove that every
shift-invariant probability distribution is logistic.

In this proof, let us use the fact that the Bayes formula
becomes even simpler if instead of probabilities P, we
consider the odds

O def
=

P
1−P

. (6)

Indeed, from the above formula

P′ =
P

P+ r · (1−P)
,

we conclude that

1−P′ =
r · (1−P)

P+ r · (1−P)
,

and thus, that

O′ =
P′

1−P′
=

P
r · (1−P)

=
1
r
· P

1−P
= s ·O, (7)

where we denoted s def
=

1
r
.

In these terms, the fact that the shift x→ x+ x0 should
lead to a Bayes-type transformation of the cumulative
distribution function F(x) means that for the corre-
sponding odds O(x) and O(x+ x0), we must have

O(x+ x0) = s(x0) ·O(x), (8)

for some constant s – which is, in general, different for
different shifts.

Each cumulative distribution function F(x) is mono-
tonic and thus, measurable. Thus, the odds function
is also measurable. It is known (see, e.g., [1]) that
all measurable solutions of the functional equation (8)
have the form

O(x) = c · exp(k · x) (9)

for some values c and k.

It is known how to go back from odds to probabilities:
from

O =
P

1−P
=

1
1
P
−1

,

we conclude that

1
P
−1 =

1
O
,

hence
1
P
= 1+

1
O

and
P =

1

1+
1
O

. (10)



Thus, in our case, we have

P(x) =
1

1+
1

O(x)

=
1

1+C · exp(−k · x)
, (11)

where C def
=

1
c

, i.e., exactly the logistic distribution.

The proposition is proven.

Conclusions of this section. In this section, it was
shown that a simple invariance – namely, invariance
with respect to shifts – leads to the logistic distribu-
tion. This explains why logistic distributions has been
so successful in practice – because these distributions
corresponds to the frequent requirement that the phys-
ical processes do not change if we simply change the
starting point for measuring the corresponding physi-
cal quantity.

3 What About the Fuzzy Case?

What about the fuzzy case? According to [3], logistic
expression works well not only for the probability dis-
tributions, but also for membership functions as well.
For membership functions, the above explanation does
not work – this explanation is based on the Bayes for-
mula, and this formula is not applicable to membership
functions. So, to explain the success of logistic mem-
bership functions, we need to provide another explana-
tion.

Idea. To come up with such an explanation, let us re-
call that one of the possible ways to get membership
degrees is to ask experts. If m out of n experts think
that the given statement is true, we assign to it the de-
gree of confidence m/n. For example, we can say that
a person of a certain age is young to a degree 0.7 if
70% of the experts consider this person young.

Resulting transformations. For complex statements
– statements that require true expertise – we want to
ask top experts, of whose opinion we are most con-
fident. Suppose that out of n top experts, m thought
that the given statement is true; then we assign, to this
statement, the degree of confidence µ = m/n.

The problem is that in many practical situations, there
are very few top experts: the number n is small. In
this case, we have a very limited number of possible
degrees. For example, when n = 5, we only have 6
possible values: 0, 1/5, 2/5, 3/5, 4/5, and 1. The only
way to make a more meaningful distinction is to use a
larger value of n, i.e., to ask more experts.

However, in the presence of the top experts, other not-
so-top experts may be either silent, or simply follow
the opinion of their peers. If we ask n′ more experts

and the new experts are silent, then the new degree of
confidence is µ ′ = m/(n+n′). In terms of the original
degree of confidence µ = m/n, we have m = µ ·n and

thus, µ ′ = c ·µ , where c def
= n/(n+n′).

If the new experts follow the majority of top experts –
and if this majority confirms our statement – then the
new degree of confidence is µ ′ = (m+n′)/(n+n′). In
terms of the original degree of confidence µ , we have
µ ′ = c ·µ +a, where a def

= n′/(n+n′).

In both cases, we have a linear transformation µ→ µ ′.
A similar linear transformation occurs if some of the
new experts remain silent, and some follow the ma-
jority of top experts. So, linear transformations make
sense for fuzzy degrees as well.

Comment. It should be emphasized that our claim is
only that linear transformations make sense, we do not
claim that only linear transformations make sense – ac-
tually, in the following text, we consider possible non-
linear transformations.

Our belief that other transformations may make sense
as well is based on the fact that in the previous text,
we only considered a very particular behavior of non-
top experts, when they are either inhibited or follow
the majority. In reality, the behavior of non-top experts
can be more complex, and this can lead to more general
transformations.

Beyond linear transformations. In principle, not all
functions are linear – for example, the Bayes formula
describes a non-linear transformation. So let us look
for a general class of transformations, i.e., functions
from real line to real line, with respect to which physi-
cal properties can be invariant.

Clearly, if the properties do not change when we apply
a transformation x′ = f (x), and do not change if we
then apply the transformation x′′ = g(x′), this means
that the whole transformation from x to x′′ = g(x′) =
g( f (x)) – which is the composition of two original
transformations – also does not change the properties.
Thus, the class of possible transformations must be
closed under composition.

Similarly, if the physical properties do not change
when we go from x to y = f (x), this means that the
transition back, from y to x = f−1(y), where f−1 de-
notes the inverse function, also preserves all physical
properties. So, the class of possible transformation
must contain the inverse transformation.

In mathematical terms, this means that the class of all
possible transformations much be a group. Also, we
want this to be constructive, we want to be able to
simulate such transformations on a computer. At any
given moment of time, a computer can only store and



use finitely many parameters. Thus, elements of the
desired transformation group must be uniquely deter-
mined by the values of finitely many parameters. In
mathematical terms, this means that the correspond-
ing group must be finite-dimensional. It is known that
under reasonable conditions, any finite-dimensional
transformation group that contains all linear transfor-
mation contains only fractional-linear transformations,
i.e., transformations of the type [6, 7, 10, 11], etc.

f (x) =
A+B · x
C+D · x

. (11)

So, we will consider fractional-linear transformations.
We will call then r-transformations (r for “reason-
able").

Comment. In particular, for D = 0, we get linear trans-
formations.

Definition 5. By an r-transformation, we mean a
fractional-linear transformation, i.e., a transformation
of type (11).

Which reasonable transformations preserve the in-
terval [0,1]? Possible degrees of confidence form the
interval [0,1]. It is therefore reasonable to look for
transformations that preserve this interval, i.e., that
map [0,1] exactly into [0,1].

Definition 6. Let a < b be real numbers. We say that a
transformation f (x) preserves the interval [a,b] if the
range f ([a,b]) = { f (x) : x ∈ [a,b]} of this transforma-
tion on the interval [a,b] is equal to this same interval:
f ([a,b]) = [a,b].

Proposition 2. If an r-transformation f (x) preserves
the interval [0,1], then this transformation has the form

f (x) =
x

x+ r · (1− x)
, (12)

for some real number r.

Proof. The requirement that the interval [0,1] is in-
variant under the transformation (12) implies that we
should have f (0) = 0 and f (1) = 1. Substituting x = 0
into the formula (12), we get A = 0 and thus,

f (x) =
B · x

C+D · x
. (13)

To simplify this expression, we can divide both the nu-
merator and the denominator of this fraction by B and
get

f (x) =
x

C0 +D0 · x
, (14)

where C0
def
=

C
B

and D0
def
=

D
B

. Now, the condition that

f (1) = 1 leads to C0 +D0 = 1, i.e., to D0 = 1−C0 and

x→ f (x) =
x

x+C0 · (1− x)
. (15)

The proposition is proven.

Now, we can formulate the same invariance ideas as
for cumulative distribution functions.

Definition 7. We say that the membership functions
µ(x) and ν(x) are equivalent if for some real number
r, we have:

ν(x) =
µ(x)

µ(x)+ r · (1−µ(x))
.

Discission. The above notion of equivalence divides
all possible membership functions into equivalence
classes. It is reasonable to call an equivalence class
invariant if this class does not change under the corre-
sponding transformation.

Definition 8. Let f (x) be a transformation. We say
that an equivalence class M of membership functions
is invariant with respect to f (or, f -invariant, for short)
if this class does not change under this transformation,
i.e., if

{µ( f (x)) : µ ∈M }= M .

This definition can be equivalently described in terms
of the membership functions from the f -invariant
equivalent class. For simplicity, we will also call these
membership functions f -invariant.

Definition 8′. Let f (x) be a transformation. We say
that a membership function µ(x) is invariant with re-
spect to f (or, f -invariant, for short) if the functions
µ( f (x)) and µ(x) are equivalent, i.e., if for some real
number r > 0, we have

µ( f (x)) =
µ(x)

µ(x)+ r · (1−µ(x))
.

Proposition 3. For each membership function µ(x),
the following two conditions are equivalent to each
other:

• µ(x) is invariant with respect to all shifts;

• µ(x) is a logistic distribution, i.e., is described by
the formula

µ(x) =
1

1+C · exp(−k · x)
. (16)

Proof. From the mathematical viewpoint, this is ex-
actly Proposition 1, which was already proven.

Comment. It should be mentioned that while we get
the same mathematical expression for the membership



functions and for the cumulative distribution functions,
these two classes of functions represent two different
situations.

There is a known mathematical relation between prob-
ability distributions and membership functions – which
was emphasized many times by Zadeh himself. This
relation is based on the fact that:

• a probability density function f (x) satisfies the
condition

∫
f (x)dx = 1, while

• a membership function µ(x) satisfies the condi-
tion max

x
µ(x) = 1.

Thus, for each probability density function f (x), we
can construct a membership function µ(x) by normal-
izing the function f (x) – i.e., by dividing it by an ap-
propriate constant:

µ(x) =
f (x)

max
y

f (y)
.

Similarly, for each membership function, we can con-
struct a probability density function f (x) by normaliz-
ing the function µ(x) – i.e., by dividing it by an appro-
priate constant:

f (x) =
µ(x)∫
µ(y)dy

.

However, this relation is between membership func-
tions and probability density functions, while in our
cases, we have a different phenomenon: namely, we
have a similarity between membership functions and
cumulative distribution functions.

4 Another Special Case

Idea. In the previous sections, we showed that invari-
ance with respect to changing the starting point leads to
the logistic distribution (and logistic membership func-
tion). A natural question is: what if instead, we require
that the probability distribution be invariant with re-
spect to changing the measuring unit, i.e., with respect
to the scaling transformation x→ c · x.

Proposition 4. For each cumulative distribution func-
tion F(x), the following two conditions are equivalent
to each other:

• F(x) is invariant with respect to all scalings;

• F(x) is described by the formula

F(x) =
1

1+C · x−k . (17)

Proposition 5. For each membership function µ(x),
the following two conditions are equivalent to each
other:

• µ(x) is invariant with respect to all scalings;

• µ(x) is described by the formula

µ(x) =
1

1+C · x−k . (18)

Comment. The resulting formulas (17) and (18) form
yet another limit case of the kappa-regression formulas
(1) and (2).

Proof of Propositions 4 and 5. From the mathemati-
cal viewpoint, the probabilistic and fuzzy formulations
are identical. so it is sufficient to prove this result in the
probabilistic case. In this case, similar to the case of
shift, we conclude that the original odds function O(x)
and the re-scaled function O(c · x) must be related by
the Bayes formula

O(c · x) = s(c) ·O(x). (19)

The function F(x) is monotonic hence measurable,
thus the odds function is also measurable, and it is
known (see, e.g., [1]) that all measurable solutions of
the functional equation (12) have the form

O(x) = c · xk (20)

for some values c and k. So, by using the formula (10),
we can go from the odds to the probability distribution,
and get

P(x) =
1

1+
1

O(x)

=
1

1+C · x−k , (21)

where C def
=

1
c

.

The proposition is proven.

5 Towards the General Case

Analysis of the problem. The general kappa-
regression distribution is concentrated, with probabil-
ity 1, on the interval (a,b). This means that in this
case, we cannot apply shift-invariance – since there is
a natural starting value a, and we cannot apply scale-
invariance – since there is a natural measuring unit,
e.g., the difference b− a. Since we cannot use the
usual linear transformations x→ x+x0 and x→ c ·x, if
we want to use invariances, we need to use some more
general transformations.



What are more general transformations? We have
already discussed the need to go beyond linear trans-
formations in one of the previous sections, and we con-
cluded that reasonable requirements lead to fractional-
linear transformations – which we then called r-
transformations. Now, we are ready to formulate our
main results.

Proposition 6. Let a < b For each cumulative distri-
bution function F(x), the following two conditions are
equivalent to each other:

• F(x) is invariant with respect to all r-
transformations that preserve the interval [a,b];

• F(x) is a kappa-regression distribution, i.e., it is
described by the formula (1).

Proposition 7. Let a < b. For each membership func-
tion µ(x), the following two conditions are equivalent
to each other:

• µ(x) is invariant with respect to all r-
transformations that preserve the interval [a,b];

• µ(x) is a kappa-regression membership function,
i.e., it is described by the formula (2).

Proof. The general interval [a,b] can be easily reduced
to the interval [0,1] by an appropriate linear transfor-
mation. Thus, in the following derivation, it is suffi-
cient to consider the case when a = 0 and b = 1.

Similar to the previous cases, without losing gener-
ality, we can consider only the probabilistic case. In
this case, the requirement is that the distribution F(x)
is equivalent to F( f (x)) for all r-transformations that
preserve the interval [0,1]. We have shown that these
transformations have the form (15).

Similar to the Bayes case, we can show that for the
expression

T (x) def
=

x
1− x

, (22)

which is similar to the expression for odds, the trans-

formation (15) leads to T ( f (x)) = c ·T (x), for c def
=

1
k

.

Thus, for the auxiliary function G(z) def
= F(T−1(z)), we

conclude that the distributions G(z) and G(c · z) are
equivalent to teach other for all c > 0. We already
know, from Proposition 4, that in this case, the aux-
iliary function G(z) is equal to

G(z) =
1

1+C · z−k .

Thus, for F(x) = G(T (x)), we get

F(x) =
1

1+C ·T (x)−k =
1

1+C ·
(

1− x
x

)k ,

which is exactly the kappa-regression-expression for
a = 0 and b = 1. A similar proof can be repeated for
any a < b.

The proposition is proven.

Conclusion. We have explained the efficiency of
kappa-regression distributions and kappa-regression
membership functions – they are the only ones which
satisfy the reasonable invariance conditions.
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