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Why Fuzzy Techniques in Explainable AI?
Which Fuzzy Techniques in Explainable AI?

Kelly Cohen, Laxman Bokati, Martine Ceberio, Olga Kosheleva, and
Vladik Kreinovich

Abstract One of big challenges of many state-of-the-art AI techniques such as deep
learning is that their results do not come with any explanations – and, taking into
account that some of the resulting conclusions and recommendations are far from
optimal, it is difficult to distinguish good advice from bad one. It is therefore desir-
able to come up with explainable AI. In this paper, we argue that fuzzy techniques
are a proper way to this explainability, and we also analyze which fuzzy techniques
are most appropriate for this purpose. Interestingly, it turns out that the answer de-
pends on what problem we are solving: e.g., different “and”- and “or”-operations
are preferable when we are controlling a single object and when we are controlling
a group of objects.
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1 Why Fuzzy Techniques in Explainable AI

Need for explainable AI. Lately, there have been a new breakthrough in Artificial
Intelligence (AI) caused by successes of deep learning; see, e.g., [2].

While deep learning techniques have been very successful in many applications,
serious problems surfaced related to their use. The main problem is that a trained
neural network is a black box, it does not provide explanations of its decisions.

Since no tool is 100% accurate, it is not clear how to separate correct advice from
wrong advice – and in social situations, the advice can be very wrong, repeating the
biases that occurred in some parts of the training data.

It is therefore desirable to develop AI tools that would translate numerical rec-
ommendations into natural-language explanations.

Why fuzzy in explainable AI. To perform the desired translation between nu-
merical recommendations and natural-language descriptions, it is reasonable to
utilize techniques that have been designed in the 1960s – and successfully used
since then – specifically to describe the correspondence between natural-language
descriptions and numerical recommendations: namely, fuzzy techniques; see, e.g.,
[1, 3, 4, 9, 10, 13]. In these techniques, to each expert statement and to each propo-
sitional combination of expert statements, we assign a degree of confidence – a
number from the interval [0,1] describing to what extent we are confident in a given
statement – original or combination.

2 Which Fuzzy Techniques in Explainable AI

Challenge. There are many different versions of fuzzy techniques – the main idea
is that there are many different “and” and “or”-operations (also known as t-norms
and t-conorms), i.e., functions f&(a,b) and f∨(a,b) that estimate our degrees of
certainty in statements A&B and A∨B in situations in which we only know the
degrees of confidence a and b in the original statement A and B.

It is known that a wrong choice of an operation can hinder the effectiveness of
the resulting system. So which operations should we choose?

Two types of situations. In this paper, we will consider two types of situations:

• In some cases, we are interested in the best performance of an individual system.
For example, we have a single drone performing meteorological (or other) ob-
servations, and we want to make sure that its probability of failure is as small as
possible.

• In other cases, we have a mass phenomenon – e.g., we are controlling a swarm of
drones, or a large number of local power stations contributing to the same grid.
In this case, we can afford the failure of some of these objects and thus, use less
expensive equipment – if this allows us to have more objects and attain the best
overall performance.



Fuzzy Techniques in Explainable AI: Why and Which 3

We will show that in these two types of situations, different pairs of “and”- and
“or”-operations are preferable.

Situations where we are interested in the individual performance. In situations
when we are interested in the individual performance, in which we want to mini-
mize the probability of failure, we want to deviations of the object from the desired
trajectory to be as small as possible – since it is such deviations that cause failure.

One of the possible reasons for such deviations in fuzzy control is that fuzzy
control is based on combining the original experts’ degree of confidence by using
“and”- and “or”-operations, and the original estimates are only provided with some
uncertainty. Just like an expert cannot provide the exact value of the desired control
– this is why fuzzy techniques are needed in the first place – the expert also cannot
describe his/her degree of confidence in a certain statement by an exact number. If
we force the expert to do it – as many systems do – the expert will provide slightly
different numbers when asked again about the same statements. These changes af-
fect the results of “and”- and “or”-operations – and thus, affect the resulting control.

A single too-large deviation from the desired control can be disastrous. So, to be
on the safe side, we want to make sure that the worst-possible deviation is as small
as possible. Let us describe this situation in precise terms. Let δ > 0 denote the
accuracy with which the experts can provide their degrees. This means that the same
expert can provide estimates a and a′ for his/her degree of confidence in the same
statement A which are δ -close, i.e., for which |a− a′| ≤ δ . Similarly, for another
statement B, the expert can provide estimates b and b′ for which |b−b′| ≤ δ . As a
result of this uncertainty, we can have different values f&(a,b) and f&(a′,b′), i.e.,
we have a non-zero difference | f&(a,b)− f&(a′,b′)|.

The worst-case scenario is when this difference is the largest possible. It is char-
acterized by the value

w( f&,δ )
def
= max
|a−a′|≤δ ,|b−b′|≤δ

| f&(a,b)− f&(a′,b′)|.

We want to select an “and”-operation for which this worst-case value is the smallest
possible. Interestingly, it turns out that in this case, the optimal “and”-operation is
f&(a,b) = min(a,b); see, e.g., [6, 7, 9].

Similarly, for an “or”-operation, the corresponding difference has the form
| f∨(a,b)− f∨(a′,b′)|. So, the worst-case scenario is when this difference is the
largest possible. It is characterized by the value

w( f∨,δ )
def
= max
|a−a′|≤δ ,|b−b′|≤δ

| f∨(a,b)− f∨(a′,b′)|.

We want to select an “or”-operation for which this worst-case value is the small-
est possible. It turns out that in this case, the optimal “or”-operation is f∨(a,b) =
max(a,b); see, e.g., [6, 7, 9].

So, in situations when we are interested in the individual performance, the opti-
mal selection of fuzzy operations is f&(a,b) = min(a,b) and f∨(a,b) = max(a,b).
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Situations where we are interested in the group performance. In situations where
we are interested in the group performance, we allow some systems to fail, but we
would like to minimize the number of failing systems – i.e., the probability that a
system will fail. A system fails if the corresponding parameters deviate too much
from their desired values. Each of these parameters is affected by many different
factors. It is known that, under reasonable conditions, the distribution of the joint
effect of many independent factors is close to Gaussian; this is known as the Central
Limit Theorem; see, e.g., [11].

A normal distribution of each quantity y is uniquely determined by its mean
and by its standard deviation. Usually, we can safely assume that the mean is 0 (or
close to 0). For a normal distribution with 0 mean and standard deviation σ , the
probability of exceeding a threshold value x0 depends only on the ratio x0/σ : the
larger this ratio – i.e., equivalently, the smaller σ – the smaller this probability.

In general, for a function y = f (x1, . . . ,xn) of several variables, when the change

∆xi is small, the corresponding change in ∆y is approximately equal to
∂ f
∂xi
·∆xi,

and thus, the corresponding variance σ2 of y is approximately equal to(
∂ f
∂xi

)2

· (σi)
2,

where σi is the standard deviation of ∆xi. Thus, to minimize σ , we need to minimize
all the values σi as well.

In particular, for the result c = f&(a,b) of an “and”-operation, this means that we
need to minimize the standard deviation causes by random deviations ∆a and ∆b.
For small deviations, for each a and b, we have

∆c =
∂ f&(a,b)

∂a
·∆a+

∂ f&(a,b)
∂b

·∆b

and thus – under the natural assumption that the deviations ∆a and ∆b are indepen-
dent and equally distributed, with standard deviation σ0 – we get

σ
2(a,b) =

(
∂ f&(a,b)

∂a

)2

·σ2
0 +

(
∂ f&(a,b)

∂b

)2

·σ2
0 .

The overall standard deviation can be obtained by averaging this value over all pos-
sible a and b, i.e., by taking

σ
2 =

∫
σ

2(a,b)dadb =
∫ ((

∂ f&(a,b)
∂a

)2

·σ2
0 +

(
∂ f&(a,b)

∂b

)2

·σ2
0

)
dadb.

Thus, minimizing the standard deviation means minimizing this integral.
It turns out – see, e.g., [8, 9] – that the “and”-operation f&(a,b) for which this

integral is the smallest possible is f&(a,b) = a ·b.
Similarly, for the “or”-operation, we need to minimize the integral
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σ
2 =

∫ ((
∂ f∨(a,b)

∂a

)2

·σ2
0 +

(
∂ f∨(a,b)

∂b

)2

·σ2
0

)
dadb.

It is known (see [8, 9]) that the “or”-operation f∨(a,b) for which this integral is the
smallest possible is f∨(a,b) = a+b−a ·b.

So, in situations when we are interested in the group performance, the optimal
selection of fuzzy operations is f&(a,b) = a ·b and f∨(a,b) = a+b−a ·b.

Other possible situations. We may be instead looking for the operations that lead
to the smoothest trajectory, or for the operations that lead to the most stable control,
or for the operations which are the fastest to compute. In all these cases, we end up
with different pairs of optimal “and”- and “or”-operations; see, e.g., [5, 12].
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10. V. Novák, I. Perfilieva, and J. Močkoř, Mathematical Principles of Fuzzy Logic, Kluwer,
Boston, Dordrecht, 1999.

11. D. J. Sheskin, Handbook of Parametric and Non-Parametric Statistical Procedures, Chapman
& Hall/CRC, London, UK, 2011.

12. M. H. Smith and V. Kreinovich. “Optimal strategy of switching reasoning methods in fuzzy
control”, Chapter 6 in H. T. Nguyen, M. Sugeno, R. Tong, and R. Yager (eds.), Theoretical
aspects of fuzzy control, J. Wiley, N.Y., 1995, pp. 117–146.

13. L. A. Zadeh, “Fuzzy sets”, Information and Control, 1965, Vol. 8, pp. 338–353.


	Why Fuzzy Techniques in Explainable AI? Which Fuzzy Techniques in Explainable AI?
	Recommended Citation

	tmp.1638981560.pdf.NZDq5

