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Abstract. In many physical theories, there is a – somewhat surprising –

similarity between events corresponding to large distances 𝑅 and events corre-

sponding to very small distances 1/𝑅. Such similarity is known as T-duality.

At present, the only available explanation for T-duality comes from a complex

mathematical analysis of the corresponding formulas. In this paper, we provide

an alternative explanation based on the fundamental notion of causality.

Keywords: T-duality, causality relation, causality-preserving transforma-

tions, inversion.

1. Formulation of the Problem

What is T-duality. In many physical theories, there is a strong similarity between
effects at large distances 𝑅 and at small distances 1/𝑅. This similarity is known as
T-duality; see, e.g., [18, 20,21].

T-duality relates two areas of physics which are among the most difficult to study
(and thus, the most mysterious): the study of very large objects (of cosmological
size) and the study of very small objects (of size below the usual particle size).

Comment. The term T-duality is sometimes also used to describe a general similarity
between two physical theories.

Need for a simple explanation. At present, T-duality arrives via a complex
analysis of the corresponding mathematical models.

It would be beneficial to come up with a simple – and more fundamental –
explanation, an explanation that would not depend on the specific complex mathe-
matical details (which may change as theories evolve), but that would be based on
fundamental physical ideas.

What we do in this paper. In this paper, we provide such a simple and funda-
mental explanation of T-duality.

2. Our Explanation

Causality is one of the most fundamental physical phenomenon. We are
interested in the explanation based on fundamental physical concepts. One of the
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most fundamental physical concept is the concept of causality: the idea that some
events in space-time can influence each other; see, e.g., [8, 22].

The fundamental character of causality implies that for a transformation to pre-
serve physical properties, this transformation should also preserve causality. Let us
therefore recall which space-time transformations preserve the causality relation.

For this analysis, we need to recall how causality is described in modern physics.

How is causality described on the local level. According to modern physics,
locally – i.e., in some vicinity of an event – metric is close to Minkowski one, and
the causality relation 𝑎 ≤ 𝑏 between two space-time events 𝑎 = (𝑎0, 𝑎1, . . . , 𝑎𝑛) and
𝑏 = (𝑏0, 𝑏1, . . . , 𝑏𝑛) is described by the formula

𝑎 ≤ 𝑏 ↔ 𝑎 = 𝑏 ∨ (𝑏0 ≥ 𝑎0&(𝑏− 𝑎)2 ≥ 0),

where 𝑛 is the dimension of proper space and 𝑎2
def
= 𝑎20 − 𝑎21 − . . .− 𝑎2𝑛.

Comment. Here, for simplicity, we assume that time and distance are measured in
the same units, i.e., that the units are selected in such a way that the speed of light
𝑐 is equal to 1. If we use different units for measuring space and time, then we will
have 𝑎2 = 𝑐2 · 𝑎20 − 𝑎21 − . . .− 𝑎2𝑛.

What transformations preserve causality: ideal case. Let us start with an
ideal case, in which the causality relation in the whole space-time 𝐸 is described by
the above Minkowki causality relation.

It is known that for every 𝑛 ≥ 2, every bijection 𝐸 → 𝐸 which preserves the
Minkowski causality relation is linear; moreover, it is a composition of Lorentz trans-
formations, shirts, rotations, and dilations.

To be precise:

∙ A Lorentz transformation is a mapping

(𝑎0, �⃗�) →
(︂
𝑎0 − �⃗� · �⃗�
1− �⃗� · �⃗�

,
�⃗�− 𝑎0 · �⃗�
1− �⃗� · �⃗�

)︂
,

where �⃗� · �⃗� def
= 𝑣1 · 𝑎1 + . . .+ 𝑣𝑛 · 𝑎𝑛, and �⃗� · �⃗� ≤ 1.

∙ A rotation is a mapping (𝑎0, �⃗�) → (𝑎0, 𝑇𝑎), where 𝑇 is a rotation in the 𝑛-
dimensional Euclidean space.

∙ A shift is a mapping 𝑎 → 𝑎+ 𝑏, for some 𝑏 ∈ 𝐸.

∙ A dilation is a mapping 𝑎 → 𝜆 · 𝑎, for some real number 𝜆.

This theorem was first proven by A. D. Alexandrov [1,5]; see also [2,3,6,7,9,10,12–
17,19,23].

Towards a more realistic case. As we have mentioned earlier, Minkowski causal-
ity is only a local approximation. So, a natural question is: what are transformations
that preserve Minkowski causality in a bounded domain?
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The answer to this question was also provided by A. D. Alexandrov; see, e.g.,
[4, 9]. For bounded domains, in addition to linear transformations, we also have
special nonlinear transformations – inversions:

∙ An inversion is a mapping 𝑎 → 𝑎− 𝑏

(𝑎− 𝑏)2
+ 𝑏, for some 𝑏 ∈ 𝐸.

∙ A singular double inversion is a mapping

𝑎 → (𝑎− 𝑏) + 𝑐 · (𝑎− 𝑏)2

1 + 2 · 𝑐(𝑎− 𝑏)
+ 𝑏

for some 𝑏 ∈ 𝐸 and 𝑐 ∈ 𝐸 for which 𝑐2 = 0.

∙ By a conformal mapping, we mean one of the above transformations or their
composition.

Alexandrov’s result is that every bijection 𝑓 : 𝐷 → 𝐷 of a bounded domain 𝐷 that
preserves Minkowski causality is a conformal mapping.

Towards an even more realistic case. The actual causality relation is only
approximately described by the Monkowski formula: the smaller the neighborhood,
the closer we are to the Minkowski causality. How can we describe transformations
that preserve approximately-Minkowski causality?

Such transformations were described in [11]: it turns out that for causality re-
lations which are sufficiently close to the Minkowski ones, the transformations that
preserve (or at least approximately preserve) causality are close to conformal map-
pings.

This leads to the desired explanation of T-duality. Indeed, here, in addition
to the usual Minkowski transformations, we also have inversions – which correspond
exactly to transformations 𝑅 → 1/𝑅 (plus dilations), and double inversions – which
can be viewed as limits of compositions of two consecutive inversions.

Thus, indeed, T-duality naturally follows from the fundamental notion of causal-
ity.

This also explains why T-duality is approximate. The above arguments also
explain why T-duality is not an exact equivalence – i.e., why there is a difference
between cosmological and micro-world laws: inversions preserve causality, but they
do not preserve the actual metric.
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