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Fuzzy Logic Leads to a More Adequate Way of
Processing Likert-Scale Values:
Case Study of Burnout

Francisco Zapata, Olga Kosheleva, and Vladik Kreinovich

AbstractMany phenomena like burnout are gauged by computing a linear combina-
tion of user-provided Likert-scale values. The problem with this traditional approach
is that, while it makes sense to have linear combination of weights or other physical
characteristics, a linear combination of Likert-scale values like “good” and “satis-
factory” does not make sense. The only reason why linear combinations are used
in practice is that the corresponding data processing tools are readily available. A
more adequate approach would be to use fuzzy logic – a technique specifically de-
signed to deal with Likert-scale values. We show that fuzzy logic actually leads
to a linear combination – but not of the original degrees, but of their transformed
values. The corresponding transformation function – as well as the coefficients of
the corresponding linear combination – must be determined from the condition that
the resulting expression best fits the available data.

1 Formulation of the Problem

Case study: burnout. In the past, most jobs were menial, tiring jobs. It is possible to
get too tired on such a job – in which case the body is no longer capable of continuing,
at least not with the same energy. These are natural barriers that evolution came up
with – to prevent our bodies from situations when too much physical activity will
induce a serious harm to our health.

At present, most jobs have a strong mental, intellectual component. This is a
reasonably new phenomenon, for which evolution has not prepared us. In contrast to
physical labor, nature does not impose any limits on our mental activities. Even after
we are tired, we are still able to do mental work – and many of us continue to do
it, especially if there are important deadlines ahead. As a result of this overworking,
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many people get intowhat is called burnout – they are stressed, they are unhappy, their
productivity plummets. This phenomenon has been observed for many professions;
in particular, software companies are affected by this phenomenon.

One of the problems with burnout is that, in contrast to physical tiredness, we
ourselves often do not notice it at first, and others do not notice it either – until the
situation becomes bad, and a serious intervention is needed.

Since there are no natural indications of a burnout, it is desirable to come up with
tools that would allows us to monitor mental workers for such a burnout.

How burnout is measured. Burnout is all about the inner mental state of a person.
So, the only reliable way to detect burnout is by asking this person questions – to
which a person provides answers of a Likert scale (e.g., from 1 to 5) – and processing
the results. This is a typical idea in psychological studies. In particular, for burnout,
one of most widely used scheme is the Maslach Burnout Inventory first proposed
in [4]. There are also later modifications of this test.

How Likert-scale data is usually processed in psychological analysis: a general
description. Usually, a test consists of several (=) questions. For each question
8 = 1, . . . , =, the patient provides an answer 08 – a number on the corresponding scale.
Designers of the test try to find coefficients 21, . . . , 2= for which the corresponding
linear combination 21 · 01 + . . . + 2= · 0= is the best correlated with the phenomenon
that we are trying to detect.

The resulting linear combination is then used as a numerical measure of the
corresponding phenomenon – for example, the measure of burnout.

But why linear combination? Adding kilograms and kilograms makes sense, but
adding “good” and “satisfactory” does not. Our understanding is that the only reason
for using linear combinations is that this is an available computational tool. Honestly,
this is not a very convincing argument.

So what shall we do?What are values on a Likert scale? These are exactly degrees
that Lotfi Zadeh started with when he invented fuzzy logic; see, e.g., [2, 3, 5, 7, 8, 10].
So why not use fuzzy logic to process these degrees?

This is what we will explore in this paper.

2 Analysis of the Problem

First – naive – idea. Numerous questions on a test describe some symptoms of the
analyzed phenomenon – in our case, of a burnout. The more symptoms a patient
has, the more severe these symptoms, the more probable it is that this patient is
approaching burnout. Each symptomby itself is already some indication of a burnout.
So, it seems reasonable to say that a patient has a burnout if this patient has the first
symptomor the second symptom, etc. In otherwords, it seems reasonable to associate
the burnout with a disjunction (1 ∨ (2 ∨ . . ., where (8 means that the 8-th symptom
is present.
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In fuzzy logic, disjunction is represented by an appropriate “or”-operation
5∨ (0, 1) (also known as a t-conorm). So, it seems reasonable to estimate the de-
gree of a burnout as the value 5∨ (01, 02, . . .), where 08 is a degree to which the 8-th
symptom is present, and the “or”-operation 5∨ (0, 1) should be determined experi-
mentally, so as to provide the best fit with the available data.

Limitations of the naive idea. The problem with the above idea is that it treats all
symptoms equally. In reality, while some symptoms have a strong relation with the
analyzed phenomena, the relation of other symptoms with this phenomenon is much
weaker.

For example, tiredness is a clear indication of a burnout, while unhappiness may
be caused by other reasons – e.g., low salary level, low morale, etc.

So what can we do. So, instead of using the same “or”-operation to combine all the
degrees 08 , we need to take into account that these degrees have different strength:
with respect to prediction of the analyzed phenomena, a very strong level of one of
the degrees 08 may correspond to a much weaker level of another degree 0 9 . Thus,
before combining, we need to bring these degrees to an equivalent form.

For example, we can bring all these degrees to the level of the degree 01. This
means that instead of simply combining the original degrees 02, . . ., we first trans-
form them into the 01-level, by applying some transformation 58 (08), and then use
the “or”-operation to combine the transformed degree, i.e., to compute the value

0 = 5∨ (01, 52 (02), . . . , 58 (08), . . .). (1)

Resulting question: what are these transformations 58 (08)? For each symptom
8, we may (and often do) have several questions describing this symptom. Let us
denote the corresponding degrees by 08,1, . . . , 08,: . In principle, we can deal with
this situation in two different ways:

• first idea is to combine these degrees into a single degree 08 = 5∨ (08,1, . . . , 08,: )
and then apply the transformation function 58 (08) to this combined degree, re-
sulting in the value 58 (08) = 58 ( 5∨ (08,1, . . . , 08,: ));

• another idea is to first apply the transformation 58 to all : degree, resulting in the
values 58 (08,1), . . . , 58 (08,: ), and only then apply the “and”-operation, resulting
in the value 5∨ ( 58 (08,1), . . . , 58 (08,: )).

The two resulting values describe the same situation and should, therefore, be equal.
This leads to the following definition.

Definition 1. Let 5∨ (0, 1) be an “or”-operation (t-conorm). We say that a function
5 (0) is consistent with 5∨ if for all possible values 01, . . . , 0: , we have

5 ( 5∨ (01, . . . , 0: )) = 5∨ ( 5 (01), . . . , 5 (0: )). (2)
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Once we have found the appropriate “or”-operation and the appropriate consistent
transformation functions 58 (08), we can then estimate the desired degree 0 by using
the formula (1).

How can we make this mathematical description more practical? It is known
that for every “or”-operation 5∨ (0, 1), and for every Y > 0, there exists an Y-close
strictly Archimedean “or”-operation, i.e., operation of the form

�−1 (� (0) + � (1)) (3)

for some monotonic continuous function � (0), where �−1 (E) denotes the inverse
function: 0 = �−1 (E) ⇔ E = � (0); see, e.g., [6]. For very small Y, the difference
between these two operations can be safely ignored. So, for all practical purposes, it
makes sense to assume that the actual “or”-operation has the form (3).

Under this assumption, we can get a full description of all possible consistent
transformations.

Proposition 1. For each “or”-operation of type (3), every function 5 (0) which is
consistent with this operation has the form

5 (0) = �−1 (2 · � (0)) (4)

for some constant 2 > 0.

Proof. Substituting the expression (3) into the formula (2), we conclude that

5 (�−1 (� (01) + . . . + � (0: ))) = �−1 (� ( 5 (01)) + . . . + � ( 5 (0: ))). (5)

By applying the function � (0) to both sides of this equality, we conclude that

� ( 5 (�−1 (� (01) + . . . + � (0: )))) = � ( 5 (01)) + . . . + � ( 5 (0: )). (6)

Let us denote � (0) def
= � ( 5 (�−1 (0))), then the left-hand side of the formula (6)

takes the form � (� (01) + . . . + � (0: )), while each term in the right-hand side takes
the form

� ( 5 (08)) = � ( 5 (�−1 (� (08)))) = � (� (08)). (7)

Thus, the formula (6) takes the form

� (� (01) + . . . + � (0: )) = � (� (01)) + . . . + � (� (0: )). (8)

For each set of values E8 , we can take 08 = �−1 (E8), then � (08) = E8 , so the formula
(8) takes the form

� (E1 + . . . + E: ) = � (E1) + . . . + � (E: ). (9)

For a monotonic function � (E), this implies that the function � (E) has the form
� (E) = 2 · E for some constant 2; see, e.g., [1]. By definition of the function � (E),
this means that � ( 5 (�−1 (E))) = 2 · E. So, for 0 = 5 −1 (E), for which E = � (0), we
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get
� ( 5 (0)) = 2 · � (0). (9)

By applying the inverse function �−1 to both sides of the formula (9), we get the
desired expression (4).

The proposition is proven.

Resulting combination rule. If we substitute the expression (3) for the “or”-
operation into the formula (1), we get

0 = �−1 (� (01) + � ( 52 (02)) + . . . + � ( 58 (08)) + . . .),

i.e., equivalently,

� (0) = � (01) + � ( 52 (02)) + . . . + � ( 58 (08)) + . . .

To make this formula uniform, we can define 51 (01) = 01, then this formula takes
the form

� (0) = � ( 51 (01)) + � ( 52 (02)) + . . . + � ( 58 (08)) + . . . (10)

According to the formula (9) from the above Proposition, for each 8, we have

� ( 58 (08)) = 28 · � (08) (11)

for some constant 28 . Substituting the expression (11) into the formula (10), we
conclude that

� (0) = 21 · � (01) + 22 · � (02) + . . . + 28 · � (08) + . . . (12)

Discussion. Our goal is to find the severity of the burnout – or of any other tested
phenomenon.

From this viewpoint, what is important are not so much the numerical values
themselves, but the relation between values corresponding to different situation:
which is larger and which is smaller. Since the function � (0) is monotonic, we can
therefore use � def

= � (0) instead of 0.
So, we arrive at the following recommendation.

3 Resulting Recommendation

Recommendation. Once we have the degrees 01, . . . , 0= corresponding to different
questions, the overall degree � can be estimated as

� = 21 · � (01) + . . . + 2= · � (0=), (13)
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where the values 28 and the function � (0) should be determined based on the
available data: they should provide the best fit for the cases when the value � is
known.

Comments.

• We still get a linear combination – but a linear combination after some possi-
bly non-linear transformation � (0). The main advantage is that now we have a
justification, so a linear combination is not just a heuristic idea.

• Our preliminary results show that by appropriately selecting a function � (0), we
can indeed get a better fit that simply by using a linear combination of values 08 .

• Similar results can be obtained if we allow patients to provide interval ranges[
0
8
, 08

]
. In this case, instead of a single value �, we get the while range

[
�, �

]
of values corresponding to different values 08 from the corresponding intervals.
Due to monotonicity, the smallest value of � is attained when all the values 08 are
the smallest possible, and the largest value of � is attained when all the values 08
are the largest possible:

� = 21 · �
(
0
1

)
+ . . . + 2= · �

(
0
=

)
; (14)

� = 21 · � (01) + . . . + 2= · � (0=) . (15)
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