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Abstract

In many practical situations, we need to make a binary decision
based on the available data: whether an incoming email is a spam or
not, whether to give a bank loan to a company, etc. In many such
situations, we can (and do) use machine learning to come up with such
a decision. The problem is that while the results of a machine learning
model are not 100% reliable, the existing machine learning algorithms
do not allow us to decide how reliable is each result. In this paper, for
simple examples, we provide a technique for gauging this reliability.
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1 Formulation of the Problem

Need for binary classification. In many practical situations, we need to
perform a binary classification, i.e., we need to decide whether a certain prop-
erty is satisfied or not. For example:

• a computer security system needs to decide whether a given email mes-
sage is a spam or not,

• a military security system needs to decide whether the image on a radar
is an indication of an enemy attack,
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• a road management company needs to decide whether the pavement
needs repairs or can serve for some more time,

• a bank needs to decide whether to give a company a loan,

• a medical doctor needs to decide whether a patient has a certain disease,
etc.

In all these cases, we need to make the corresponding decision based on the
relevant measurement results.

Use of machine learning. In rare cases, we know exactly how to make a
decision based on the corresponding measurement results. However, in most
real-life situations – e.g., the ones mentioned in the previous paragraph – we do
not have a clear algorithm. Instead, we need to learn how to classify based on
examples in which the classification is known – i.e., by using machine learning;
see, e.g., [1, 2].

In each such example k (k = 1, . . . , K), we know the values

x(k) =
(
x
(k)
1 , . . . , x(k)

n

)
of the corresponding measurement results, and we know to what class this
situation belongs. For binary classification, we can describe the two classes by
taking y(k) = 0 or y(k) = 1 depending on which of the two classes this situation
belongs to. Based on these example, we want to find a function f(x1, . . . , xn)
for which, for all known examples k, we have

f
(
x(k)

)
≈ y(k). (1)

In many cases, this closeness is described by minimizing the Euclidean dis-
tance between the vectors

(
f
(
x(1)

)
, . . . , f

(
x(K)

))
and

(
y(1), . . . , y(K)

)
, i.e.,

equivalently, by minimizing the square of this distance:

K∑
k=1

(
f
(
x(k)

)
− y(k)

)2
; (2)

however, other measures of closeness are used as well; see, e.g., [1, 2].

Problem. By applying the resulting function f(x1, . . . , xn) to the measure-
ment results corresponding to the given situation, the system will decide
whether the situation has the corresponding property or not (and sometimes,
the system is allowed to say “I do not know”). The problem is that this deci-
sion is not 100% reliable – as any empirical decision is not 100% reliable. The
actual experience of using machine learning shows that sometimes the recom-
mended decision is incorrect. It is therefore desirable not only to produce this
decision, but also to indicate to what extent this decision is reliable.
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Such information is provided by many statistical methods (see, e.g., [3]),
but not by most machine learning techniques.

What we do in this paper. In this paper, we show how, in simple situations,
we can gauge reliability of the binary classification result.

2 What We Mean by a Simple Case

What do we mean by simple situations. Let us first describe what we
mean by a simple situation. Specifically, we will list possible complications
which make the problem of gauging reliability even more difficult to solve, and
explain that by a simple situation, we mean a generic situation in which these
additional complications are not present.

First assumption: we have sufficiently many examples. In some cases,
we do not have enough data to make reliable predictions. In this paper, we
assume that there was a sufficient amount of data, so that we can make mean-
ingful predictions – and not just trying to guess based on a single example.

Second assumption: we have been able to find the global minimum.
In some cases, we get stuck in a local minimum of the objective function (2).
For simplicity, we assume that this is not the case, that we have reached the
global minimum of the expression (2) – or at least that we are close to the
global minimum.

Third assumption: there are sufficiently many parameters in our
model. The usual way to find the desired function is to start with some
general model f(x1, . . . , xn, c1, . . . , cm) and to find the values of the parameters
c1, . . . , cm that minimize the objective function (2).

If we use, e.g., linear models

y = c0 +
n∑

i=1

ci · xi,

with only n + 1 parameters, then it is difficult to achieve closeness (1) for all
the examples. For simplicity, we assume that we use a model with sufficiently
many parameters, so that it is possible to achieve closeness (1).

3 Analysis of the Problem and the Resulting

Recommendation

Case when all examples indicate the same thing. In general;
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• we have a situation x = (x1, . . . , xn), and

• we want to find out whether the corresponding property is satisfied in
this situation.

Crudely speaking, what machine learning does is looks for similar past
situations x(k) ≈ x. In some cases, in all such close-to-x situations, we had the
same classification y(k) – for example, the same value y(k) = 0. In this case,
under our simplifying assumptions, the function f(x) will be close to 0 for all
these values and thus, close to 0 for the new situation x as well. So, we will
get f(x) ≈ 0.

Similarly, if for all similar-to-x situations k, we had y(k) = 1, then our
model will return f(x) ≈ 1.

Often, the situation is more complicated. In reality, the situation is
usually more complicated – simply because the available information x is not
completely sufficient to uniquely determine whether the situation has the cor-
responding property or not. For example, whether a company will be able to
repay the loan depends not only on the company itself, it also depends on the
overall difficult-to-predict economic situation.

Analysis. In such realistic settings, out of all C close-to-x situations – i.e.,
situations for which x(k) ≈ x:

• for some of them, we have y(k) = 0 and

• for others, we have y(k) = 1.

Let us denote the number of such situations, correspondingly, by C0 and C1,
so that C0 + C1 = C. In this case, for these situations, minimizing the corre-
sponding part of the criterion (2) means minimizing the sum

C0 · (f(x) − 0)2 + C1 · (f(x) − 1)2. (3)

Differentiating this expression with respect to the unknown f(x) and equating
the resulting derivative to 0, we get

2C0 · f(x) + 2C1 · (f(x) − 1) = 0.

If we divide both sides of this equality by 2 and then move terms not depending
on f(x) to the right0hand side, we get (C0 +C1) ·f(x) = C1, i.e., C ·f(x) = C1

and

f(x) =
C1

C
. (4)

In other words, in this case, the value f(x) generated by our trained model
will be different from 0 and 1 – and will be equal to the proportion of the
close-to-x examples for which y(k) = 1.
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Towards a recommendation. If in half of the previous close-to-x cases, we
have y(k) = 1, then a natural conclusion is that in our case:

• we will have y = 1 with probability 0.5, and

• we will have y = 0 with the remaining probability 1 − 0.5 = 0.5.

Similarly, if in 70% of the previous close-to-x cases, we have y(k) = 1, then
a natural conclusion is that in this case:

• we will have y = 1 with probability 0.7, and

• we will have y = 0 with the remaining probability 1 − 0.7 = 0.3.

In general, we arrive at the following recommendation.

Resulting recommendation. For any new situation x = (x1, . . . , xn), we
plug in the measurement results x1, . . . , xn into the trained model, and get
some value f(x). In our simplified situation, this value always belongs to the
interval [0, 1].

Our recommendation is to view the value f(x) as the probability that for
the situation x, we have y = 1. With the remaining probability 1 − f(x), we
have y = 0.
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