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When to Stop Computing and Start Investing

Sean R. Aguilar and Olga Kosheleva
University of Texas at El Paso

500 W. University
El Paso, TX 79968, USA

sraguilar4@miners.utep.edu, olgak@utep.edu

Abstract

Purpose: The purpose of the study is to analyze when – while pre-
dicting the future price of a financial instrument – we should stop com-
putations and start using this information for the actual investment.

Design/methodology/approach: We derive the explicit formulas
explaining how the resulting gain depends on the duration of computa-
tions.

Findings: We provide an algorithm that enables us to decide the
computation time that leads to the largest possible gain.

Originality/value: To the best of our knowledge, this is the first
solution to the problem. Following our recommendations will allow in-
vestors to select the computation time for which the resulting gain is the
largest possible.

Keywords: Investment; Optimal investment portfolio; Computation
time.

1 Formulation of the Problem

Need for predictions. The price of each stock – and, in general, of each
financial instrument – reflects the investors’ prediction of how this particular
instrument will change. If the market believes that the company will prosper,
the price of its stock goes up; vice versa, in the market believes that the company
will go into decline, the price of its stock goes down.

Of course, these general market predictions are approximate. As a result, if
some agent can come up with better predictions, this agent can make money.
For example, if the agent’s predictions are higher than the general market’s,
then it makes sense to buy this stock and then sell it with profit when its value
increases above the market’s expectations.

For this purpose, trading companies use complex prediction algorithms,
ranging from simple numerical models to deep learning; see, e.g., [1].

When should we stop computing? For most prediction algorithms, the
more time we spend on computing, the more accurate are the predictions. For
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example, in machine learning algorithms – including deep learning – the more
data we use for prediction, the more accurate the predictions; however, the more
data we use for prediction, the longer the computations take.

At first glance, it may seem that we should aim for the maximum possible
prediction accuracy. However, if we are predicting tomorrow’s price, and the
computations of the most accurate prediction require more than 24 hours, then
this prediction is useless. If computations take 23 hours, then it is also possibly
useless, since by then, most of the increase or decrease in price that we are
trying to predict – and which we plan to use to gain some profit – would have
already occurred.

So what is the optimal computation time? When should we stop computing
and start using the results of our computations to actually invest the money?

What we do in this paper. In this paper, on the example of a somewhat
simplified model, we provide an answer to this question.

We hope that our solution will encourage researchers to solve this problem
in a more general (and more realistic) setting.

2 Toward Formulating the Problem in Precise
Terms

What is our objective. Investments are risky. The more risk we tolerate,
the more gain we can get. Usually, a investor selects how much risk he/she can
tolerate, and tries to maximize the expected gain under this restriction on the
risk.

How can we gauge risk? Investments are risky because the actual future
value of the stock is, in general, different from our prediction estimate. The
future price is not uniquely determined by today’s knowledge and, thus, consti-
tutes what is called a random variable. There is a natural way to gauge how
different the values of a random variable can be – we can estimate it by this
variable’s standard deviation σ (or, alternatively, by its variance V = σ2).

Thus, a reasonable idea to describe an investor’s tolerance to risk is to have
an upper bound σ0 on the corresponding standard deviation per-invested-dollar:

σ ≤ σ0.

How the tolerated standard deviation depends on time-to-predicted-
event. If we are predicting the price of the instrument the next day, the change
in the price is usually small, and thus, the corresponding deviation is small. On
the other hand, if we are predicting next year’s price, the changes may be large
and thus, the standard deviation σ will be large. In this case, the bound σ0
should be larger.

In general, the larger the time-to-predicted-event, the larger the correspond-
ing standard deviation, and thus, the larger should be the corresponding bound.
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How can we describe the dependence σ0(t) of the tolerable standard deviation
on the time-to-predicted-event t?

Suppose that we have two consequent time intervals, of durations t1 and t2.
Suppose that the investor tolerates the standard deviation σ0(t1) for predictions
over the first time interval, and the deviation σ0(t2) for predictions over the
second time interval. The change in price over the combined interval of duration
t1+t2 is equal to the sum of the changes over the intervals of durations t1 and t2.

For stock market, fluctuations occurring during different time intervals are
largely independent. It is known that the variance of the sum of two independent
random variables is equal to the sum of their variances; see, e.g., [2]. Thus, the
variance σ2

0(t1 + t2) is equal to the sum of the corresponding variances:

σ2
0(t1 + t2) = σ2

0(t1) + σ2
0(t2).

From this condition, one can easily check that σ2
0(t) is a linear function of time:

σ2
0(t) = k · t for some constant t. Thus, we have

σ0(t) = s ·
√
t,

where we denoted s
def
=
√
k.

Let us formulate the problem in precise terms: what we know. Suppose
that we have a financial instrument – e.g., a stock or a portfolio of stocks that
closely follows the whole stock marker – that grows with the average rate g.
This means that in a year, each invested dollar will grow by the amount g, and
during the period of duration t, each invested dollar will grow by the amount

b · t.

The risk corresponding to this financial instrument is usually larger than
what a investor can tolerate; so, the investors do not invest all their money in
this instrument. To decrease the risk, they invest some of their money into this
instrument, and the remaining amount of money into a no-risk instrument (such
as US bonds). If these bonds grow with the rate b, then, in a year, each dollar
invested in bonds will grow by the amount b, and during the period of duration
t, each invested dollar will grow by the amount b · t.

Suppose now that, according to the market’s expectations – which are usually
obtained simply by analyzing how the price changed in the past – the standard
deviation of the change in the per-invested-dollar price of the selected financial
instrument during time t is equal to σm(t) = m ·

√
t for some value m; the

square-root dependence of this standard deviation on time can be explained the
same way as the dependence of the risk bound σ0(t) on time.

Suppose also that our prediction program, when asked to predict the price
of the instrument t moments in the future, after it has been computing for
time tc, predicts the desired future price with accuracy σ(t, tc). The longer the
computations last – i.e., the larger the computation time tc – the more accurate
the predictions.

3



The value σ(t, tc) can be estimated based on the ability of the software to
predict the already observed prices.

Let us formulate the problem in precise terms: what we want. We
want to find our at what time tc we should stop the computations and use
this information for investment – and what time period t should we use for
predictions.

Analysis of the problem. At first, while computations are still going on,
to decide which portion p of our money to invest in the given (risky) financial
instrument, we can only use the general market’s estimates for this instrument’s
standard deviation.

For each dollar, we invest the part p in the risky financial instrument, and
the remaining part 1 − p in the bonds. Then, the expected per-invested-dollar
gain is equal to

p · g · t+ (1− p) · b · t = b · t+ p · (g − b) · t. (1)

The portion p is determined by the condition that this gain should be the largest
possible under the condition that the risk is bounded by value σ0(t) = s ·

√
t.

We use the market’s estimate of the standard deviation of 1 dollar invested
in the instrument. This estimate is σm(t) = m ·

√
t. So, the standard deviation

of a p-dollars investment is equal to p ·m ·
√
t. Thus, the risk-related constraint

takes the form
p ·m ·

√
t ≤ s ·

√
t,

i.e., equivalently, the form p ≤ s

m
.

The larger the portion p invested in the risky financial instrument (such as
stock(s)), the larger the expected return. Thus, under the given constraint, the
largest possible value of the expected return is attained when the portion p is

the largest possible, i.e., when p =
s

m
. During the time tc – while computations

are going on – we get the gain

b · tc +
s

m
· (g − b) · tc. (2)

At the moment tc, we stop the computations and get the estimate σ(t, tc).
Since this is a more accurate estimate of the instrument’s standard deviation
than the market estimate that we previously used, it makes sense to take this
new estimate into account and correspondingly re-calculate the portion of money
invested in the instrument. In this case, the risk-related constraint takes the

form p · σ(t, tc) ≤ s ·
√
t, hence p ≤ s ·

√
t

σ(t, tc)
. Thus, we the new portion pnew of

money invested in the stock is equal to

pnew =
s ·
√
t

σ(t, tc)
,
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and the resulting gain during the remaining time t− tc is equal to

b · (t− tc) +
s ·
√
t

σ(t, tc)
· (g − b) · (t− tc). (3)

By adding up the gains (2) and (3), we get the expression for the overall gain:

b · t+ s · (g − b) ·
(
tc
m

+
(t− tc) ·

√
t

σ(t, tc)

)
. (4)

In particular, if we divide this amount by the time t, we get the following gain-
per-unit-time G:

G = b+ s · (g − b) ·
(

tc
t ·m

+
t− tc

σ(t, tc) ·
√
t

)
. (5)

The largest value of this gain is attained for the values tc and t for which the
expression

tc
t ·m

+
t− tc

σ(t, tc) ·
√
t

(6)

attains the largest possible value.

3 Resulting Recommendations

What is given.

• We have a risk-free investment with the expected per-invested-dollar gain b.

• We know how much risk the investor can tolerate. This knowledge is
described by the value s such that, when investing for a time t, the stan-
dard deviation of the change in the per-invested-dollar price of a portfolio
should not exceed s ·

√
t.

• We also have a financial instrument with the expected per-invested-dollar
gain g. This expected gain can be determined by analyzing the previous
prices (and gains) of this instrument.

• Based on these previous prices and gains, we can also determine the coef-
ficient m that describes the standard deviation σ(t) of the change of the
instrument’s per-invested-dollar price during the time interval t:

σ(t) ≈ m ·
√
t.

• We also have a prediction algorithm. We can use this algorithm for pre-
dicting the instrument’s price t moments into the future. We can run this
algorithm for different amounts tc of computation time. Based on apply-
ing this algorithm to the previous data, for each amount tc of computation
time, we estimate the standard deviation σ(t, tc) of the instrument’s future
per-invested-dollar price.
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Our recommendation. The largest possible gain-per-unit-time occurs for the
values t and tc for which the following expression attains the largest possible
value:

tc
t ·m

+
t− tc

σ(t, tc) ·
√
t
. (6)

The resulting gain-per-dollar-and-per-unit-time is equal to

G = b+ s · (g − b) ·
(

tc
t ·m

+
t− tc

σ(t, tc) ·
√
t

)
. (5)
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