
University of Texas at El Paso University of Texas at El Paso 

ScholarWorks@UTEP ScholarWorks@UTEP 

Departmental Technical Reports (CS) Computer Science 

1-1-2021 

How to Estimate Time Needed for Software Migration How to Estimate Time Needed for Software Migration 

Francisco Zapata 
The University of Texas at El Paso, fcozpt@outlook.com 

Olga Kosheleva 
The University of Texas at El Paso, olgak@utep.edu 

Vladik Kreinovich 
The University of Texas at El Paso, vladik@utep.edu 

Follow this and additional works at: https://scholarworks.utep.edu/cs_techrep 

 Part of the Computer Sciences Commons, and the Mathematics Commons 

Comments: 

Technical Report: UTEP-CS-21-01 

Published in Applied Mathematical Sciences, 2021, Vol. 15, No. 1, pp. 9-14. 

Recommended Citation Recommended Citation 
Zapata, Francisco; Kosheleva, Olga; and Kreinovich, Vladik, "How to Estimate Time Needed for Software 
Migration" (2021). Departmental Technical Reports (CS). 1534. 
https://scholarworks.utep.edu/cs_techrep/1534 

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UTEP. It has 
been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of 
ScholarWorks@UTEP. For more information, please contact lweber@utep.edu. 

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/cs_techrep
https://scholarworks.utep.edu/computer
https://scholarworks.utep.edu/cs_techrep?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1534&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1534&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1534&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/cs_techrep/1534?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1534&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu


How to Estimate Time Needed for Software

Migration

Francisco Zapata1, Olga Kosheleva2 and Vladik Kreinovich3

1Department of Industrial, Manufacturing,
and Systems Engineering

2Department of Teacher Education
3Department of Computer Science
University of Texas at El Paso

500 W. University
El Paso, TX 79968, USA

fcozpt@outlook.com, olgak@utep.edu, vladik@utep.edu

Abstract

In many practical situations, we need to migrate the existing software
package to a new programming language and/or a new operating system.
In such a migration, it is important to be able to accurately estimate
time needed for this migration: if we underestimate this time, we will
lose money and may go bankrupt; if we overestimate this time, other
companies who estimate more accuracy will outbid us, and we will lose
the contract. The formulas currently used for estimating migration time
often lead to underestimation. In this paper, we start with the main
ideas behind the existing formulas, and show that a deeper analysis of the
situation leads to more accurate estimates. Our empirical study shows
that the new, more accurate formulas do not suffer from underestimation.

1 Formulation of the Problem

Need for software migration. In many application areas – especially related
to business – algorithms remain largely the same for long period of time. How-
ever, programming language change, operating systems change. As a result,
periodically, there appears a need to migrate the original software to the new
language and/or new operating system; see, e.g., [1] and references therein.

Time estimates are important. Many software packages contain millions
lines of code. Migrating such hue packages requires a lot of work. So, a company
that agrees to perform this task needs to make a good estimate of the time which
is needed for such a migration.

1



If a company underestimates the amount of work, it will have to spend more
time – and thus, more money – on this project than originally planned and
which was the basis of the agreed-upon contract. As a result, the company will
lose money on this project.

If a company drastically overestimates the amount of work – and thus, asks
too much money for this job – it will be overbidden by competitors who have
better estimates and who can thus agree to fulfil this task much cheaper.

Comment. From the business viewpoint, underestimation is much more dan-
gerous – it can bankrupt the company. Thus, if an accurate estimation is not
possible, it is better to have a slight overestimation that an underestimation.

How this time is estimated now. Deep analysis of a large software package
requires a lot of time – and this time is wasted if the competitors get the contract.
Thus, usually, when time is estimated on the pre-contract stage, only a simple
analysis is performed.

Usually, the only parameters which are used for this estimation is the overall
length L of the code and the number of modules M in the package. Specifically,
in most cases, the time is simply estimated as c ·M for some constant c – the
average time needed to migrate a module.

Remaining problem. The main problem with the usual method of estimating
migration time is that it often leads to underestimation. We thus need a better
way to estimate this time.

2 Analysis of the Problem

Simplest case when we only know the overall length of the code. To
come up with a better solution to the above problem, let us start with the
simplest situation when all we know is the overall length L of the code – e.g.,
measured by lines of code. We want to estimate the migration time T based on
this length L.

Let f(L) denote the time estimate corresponding to length L. In the first
approximation, we can approximate the function f(L) by the first two terms in
its Taylor expansion:

T = a0 + a1 · L. (1)

Second approximation: taking into account that the to-be-migrated
software package consists of modules. Let us now take into account that
the software package consists of modules. The time Ti needed to migrate each
module of size Li can be, similarly to the previous subsection, estimated as

Ti = a0 + a1 · Li. (2)

The overall time T needed to migrate the whole package depends on these
times Ti: T = f(T1, . . . , Tn). Similarly to the previous section, in the first

2



approximation, we can approximate this function by its linear terms:

T = b0 +
∑

bi · Ti. (3)

In this approximation, we do not have any specific information about different
modules – other than their lengths. Thus, we do not have any reason to assume
that the coefficients bi corresponding to different modules are different. Thus,
it is reasonable to consider them all equal to each other: b1 = b2 = . . . Under
this arrangements, the formula (3) has a simplified form

T = b0 + b1 ·
∑

Ti. (4)

Substituting the expression (2) into this expression (4), we conclude that

T = b0 + b1 · a0 ·M + b1 · a1 ·
∑
i

Li, (5)

where by M , we denoted the number of modules.
Here, the sum

∑
i

Li of the lengths the modules is equal to the overall length

L of the package. So, the formula (5) takes the following form

T = b0 + c0 ·M + c1 · L, (6)

where we denoted c0
def
= b1 · a0 and c1

def
= b1 · a1.

This is what is currently used. The formula (6) is what is currently used
to estimate the migration time.

To be more precise, what is usually used is simply an expression proportional
to M . The length of each module is limited by some constant L0, so we have
L ≤ M · L0. Thus, from formula (6), we can conclude that

T ≤ b0 + c ·M, (7)

where c
def
= c0 + c1 ·L0. The coefficient b0 is usually set to 0, since if there are no

modules (M = 0), there is no need to migrate anything, so the migration time
is 0:

T ≤ c ·M. (7a)

Comment. The best estimate of this type can be obtained if we take into account
both the number of modules M and the overall length L of the package. But
what if we only use one of these numbers? Usually, people use M .

Why not L? In principle, they can also use L, but this would provide a
much cruder estimate. Instead, while there is an upper bound L0 on the length
of the module, there is no meaningful lower bound on this length. There can
be very short modules. In other words, the lower bound `0 is very small. So,
if we know L, then the only upper bound on M is M ≤ L/`0. Most modules

3



are much larger, so using this inequality instead of the actual value M would
drastically overestimate the migration time. Because of this, practitioners use
M and not L if they need to select only one of these numbers for the desired
estimation.

Need for the next approximation: reminder. As we have mentioned
earlier, the currently used formulas (6), (7), and (7a) often lead to an underesti-
mation of migration time. It is therefore necessary to consider a more accurate
description of the migration process than what is provided by the above second
approximation.

Next approximation. In the first approximation, we viewed the package as
a whole. In the second approximation, we took into account that the package
consists of modules. A natural next approximation is when we take into account
that modules are usually not used by themselves: for each task, an executable
file is usually formed based on several relevant modules. These executable files
are formed, e.g., by makefiles.

The same module may be used in forming several different executable files.
This is important to take into account, since it is not enough to migrate all the
modules one by one: we also need to make sure that migrated modules used in
the same executable file are compatible with each other. So, if the same module
is used in forming several different executable files, it takes longer to migrate
this module: since we need to make sure that its migrated version is compatible
with several different groups of modules.

So now, instead of a simple hierarchical structure of the second approxi-
mation, when we simply considered a package consisting of modules, we have a
more complex structure: the package consists of executable files, and executable
files consist of modules. Let us use the same ideas that were used to derive the
currently used formulas (6), (7), and (7a), to transform this structure into the
desired formula for estimating migration time.

Similarly to the case of second approximation, for each module i, we have
an estimate Ti = a0 +a1 ·Li, and for each executable file a, we have an estimate

ta = b0 + b1 · a0 ·Ma + b1 · a1 ·
∑
i∈a

Li, (8)

where Ma is the number of modules used in forming the a-th executable file.
The overall migration time T can be obtained from the estimates t1, t2, . . .:

T = F (t1, t2, . . .). Similarly to the case of the second approximation, we can
safely assume that the dependence F (t1, . . .) is linear, and that the coefficients
at different values ta in this linear dependence are the same for all a:

T = b0 + b1 ·
∑
a

ta. (9)

Substituting the expression (8) into the formula (9), we conclude that

T = b0 + c0 ·
∑
a

Ma + c1 ·
∑
a

∑
i∈a

Li. (10)

4



The main difference between this formula and the currently used formulas (6),
(7), and (7a) is that if the same module is used in forming several different
executable files, it leads to a larger contribution to the second and the third
terms. This explains why the usual formulas (6), (7), and (7a) often lead to
an underestimation: the currently used formulas do not take into account that
some modules are used in forming several executable files.

Towards a simplified version of the formula (10). Similar to the case of
the currently used second approximation, we can form a simplified version of
the formula (10) if we take into account that there is a limit L0 on the lengths
Li of the modules. Because of this limit, for each executable file a, we have∑

i∈a

Li ≤ L0 ·Ma,

and thus, the formula (10) leads to the following inequality

T ≤ b0 + c ·
∑
a

Ma. (11)

Taking into account that if there are no modules M = 0, there is no need to
migrate anything, we get b0 = 0 and

T ≤ c ·
∑
a

Ma. (11a)

3 Resulting Estimates of Migration Time

Estimates. To estimate the time T needed to migrate a software package, we
can use the following formula:

T = b0 + c0 ·
∑
a

Ma + c1 ·
∑
a

∑
i∈a

Li, (10)

where Ma is the number of modules that are used to form the a-th executable
file, and Li is the length of the i-th module. This formula leads to a simplified
estimate:

T ≤ b0 + c ·
∑
a

Ma (11)

and
T ≤ c ·

∑
a

Ma. (11a)

Testing. We have tested these formulas. They indeed lead to more accurate
estimation of the migration time that the traditionally used formula (6), (7),
and (7a), and – in contrast to the traditionally used formulas – do not lead to
underestimation of migration time.

5



Acknowledgments

This work was supported in part by the National Science Foundation grants
1623190 (A Model of Change for Preparing a New Generation for Professional
Practice in Computer Science), and HRD-1834620 and HRD-2034030 (CAHSI
Includes).

References

[1] G. Blokdyk, Software Modernization: A Complete Guide, The Art of Service,
2020.

6


	How to Estimate Time Needed for Software Migration
	Recommended Citation

	tmp.1638981560.pdf.T6sa8

