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Geometric Analysis Leads to Adversarial
Teaching of Cybersecurity

Christian Servin, Olga Kosheleva, and Vladik Kreinovich

Abstract As time goes, our civilization becomes more and more dependent on
computers and therefore, more and more vulnerable to cyberattacks. Because of
this threat, it is very important to make sure that computer science students –
tomorrow’s computer professionals – are sufficiently skilled in cybersecurity. In this
paper, we analyze the need for teaching cybersecurity from the geometric viewpoint.
We show that the corresponding geometric analysis leads to adversarial teaching –
an empirically effective but not-well-theoretically-understood approach, when the
class is divided into sparring mini-teams that try their best to attack each other and
defend from each other. Thus, our analysis provides a theoretical explanation for the
empirical efficiency of this approach.

1 Need for Teaching Cybersecurity: The Practical Problem and
Its Natural Geometric Formalization

Cybersecurity is important.As time goes, our world relies on computers more and
more. Computers are needed for us to communicate, to pay and get paid, to travel
– in short, for all aspects of our lives. The ubiquity of computers makes all these
aspects vulnerable to cyberattacks. This, in turn, makes cybersecurity – the ability
to defeat such attacks – extremely important. It is therefore very important to teach
cybersecurity skills to computer science students – and to other future (and present)
computer professionals.
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A natural geometric approach to cybersecurity.During the cybersecurity training,
students are exposed to several possible situations. Let us denote the number of such
situations by 𝑛, and the situations themselves by 𝑠1, . . . , 𝑠𝑛. Let us also denote by 𝑆
the set of all possible situations.
In real life:

• when the correspondingly trained person encounters a situation 𝑠 which is similar
to one of the situations 𝑠𝑖 with which he/she is familiar,

• then, with high probability, the person will be able to adequately react to the new
situation 𝑠 as well.

The closer the situations 𝑠 and 𝑠𝑖 , the higher the probability that this person’s reaction
will be adequate. Vice versa, the larger the difference between the two situation, the
higher the probability that the cyberattack will be successful.
It is usually possible to describe the degree of difference between the two situations

𝑠 and 𝑠′ by a number 𝑑 (𝑠, 𝑠′). This number can be determined by experts, or it can
be based on the empirical data. In this paper, we will assume that these numbers are
determined in such a way that the following natural properties are satisfied:

• 𝑑 (𝑠, 𝑠) = 0 for all 𝑠,
• 𝑑 (𝑠, 𝑠′) > 0 for all 𝑠 ≠ 𝑠′,
• 𝑑 (𝑠, 𝑠′) = 𝑑 (𝑠′, 𝑠) for all 𝑠 and 𝑠′, and
• the triangle inequality 𝑑 (𝑠, 𝑠′′) ≤ 𝑑 (𝑠, 𝑠′) + 𝑑 (𝑠′, 𝑠′′) for all 𝑠, 𝑠′, and 𝑠′′.

In mathematical terms, this means that the corresponding function 𝑑 (𝑠, 𝑠′) is a
metric.
The closer a new situation 𝑠 to one of the previous situations 𝑠𝑖 , i.e., the smaller

the value
𝑑 (𝑠, {𝑠1, . . . , 𝑠𝑛})

def
= min

𝑖
𝑑 (𝑠, 𝑠𝑖), (1)

the more efficient the defence against this situation. Vice versa, the larger the value
(1), the less efficient the defense, and the larger the probability that the attack will
succeed.
The attackers are usually familiar with what potential defenders know. So, to

attack, they create a situation 𝑠 for which the probability of success is the largest,
i.e., equivalently, for which the value (1) is the largest. Thus, the probability that an
attack will be successful is determined by the value

max
𝑠∈𝑆

𝑑 (𝑠, {𝑠1, . . . , 𝑠𝑛}). (2)

The larger this value, the larger the probability that the attack will be successful.
In mathematical terms, the maximum (2) can be naturally described in terms of

the Hausdorff distance between the two sets 𝐴 and 𝐵. This distance is defined as the
smallest value 𝜀 > 0 for which:

• for each element 𝑎 ∈ 𝐴, there exists an element 𝑏 ∈ 𝐵 for which 𝑑 (𝑎, 𝑏) ≤ 𝜀, and
• for each element 𝑏 ∈ 𝐵, there exists an element 𝑎 ∈ 𝐴 for which 𝑑 (𝑎, 𝑏) ≤ 𝜀.
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In this terms, the value (2) is equal to the Hausdorff distance

𝑑𝐻 (𝑆, {𝑠1, . . . , 𝑠𝑛}) (3)

between:

• the set 𝑆 of all possible situations, and
• the set {𝑠1, . . . , 𝑠𝑛} on which the defenders have been trained.

The larger the number 𝑛 of situations that the student study, the better the students
will be prepared to defend against cyberattacks. However, in practice, the number 𝑛
of different situations is limited by the need to describe all of them within the given
training time. From this viewpoint, it is reasonable to assume that the value 𝑛 is
fixed. In this case, our objective is:

• given 𝑛,
• to minimize the probability of the attack’s success, i.e., equivalently, to find the
situations 𝑠1, . . . , 𝑠𝑛 for which the expression (2)-(3) is the smallest.

We will denote the optimal value of the expression (2)-(3) by 𝜀𝑛 (𝑆):

𝜀𝑛 (𝑆)
def
= min

𝑠1 ,...,𝑠𝑛
𝑑𝐻 (𝑆, {𝑠1, . . . , 𝑠𝑛}). (4)

In this paper, we analyze how this minimization problem can be solved.

An alternative formulation. Alternatively, we can consider a different version of
this problem: instead of fixing the training time (and thus, fixing 𝑛):

• we can fix the desired probability that the defense will be successful – i.e.,
equivalently, the desired value 𝜀 > 0 of the quantity (2) – and

• we want to find out how to train defenders to reach this efficiency within the
smallest possible time – i.e., via the smallest possible number of training situa-
tions 𝑛.

In this alternative formulation, we want to find the set of situations {𝑠1, . . . , 𝑠𝑛} for
which every other situation 𝑠 ∈ 𝑆 is 𝜀-close to one of them, i.e., for which, for each
𝑠 ∈ 𝑆, there exists an 𝑖 for which 𝑑 (𝑠, 𝑠𝑖) ≤ 𝜀.
In mathematical terms, such a set is known as an 𝜀-net; see, e.g., [7, 8]. The

smallest possible number of elements in an 𝜀-net for a set 𝑆 is usually denoted
by 𝑁𝜀 (𝑆). The binary logarithm 𝐻𝜀 (𝑆)

def
= log2 (𝑁𝜀 (𝑆)) of this number is called

𝜀-entropy; see, e.g., [7, 8].

The two formulations are equivalent. From the mathematical viewpoint, both
formulation represent, in effect, the same optimization problem. Indeed, one can
check that 𝐻𝜀 (𝑆) is an inverse function to 𝜀𝑛 (𝑆), in the following precise sense:

𝐻𝜀 (𝑆) ≤ 𝑛 ⇔ 𝜀 ≥ 𝜀𝑛 (𝑆).
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We cannot feasibly solve the corresponding optimization problem. It is known
that problem of finding the smallest 𝜀-net is, in general, NP-hard; see, e.g., [1].
This means, in particular, that unless P = NP (which most computer scientists

believe to be false; see, e.g., [3]), it is not possible to have a feasible algorithm that:

• given a set 𝑆 with a metric 𝑑 (𝑠, 𝑠′),
• always returns the optimal 𝜀-net for this set.

So, we cannot rely on any general feasible algorithm to find the optimal set of training
situations.
The best we can do is to find a solution which is as close to optimal as feasibly

possible.

Comment. This paper is a revised and extended version of our shorter conference
paper [10]; specifically, we made the following two extensions:

• first, in this paper, we explain the geometric model in more detail that in the
conference version;

• second, we also explain how to best implement the corresponding teaching strat-
egy.

2 A Natural Algorithm for Solving Our Problem

A natural algorithm. In the alternative formulation, we do not know how many
training situations we will need to achieve the desired proficiency, i.e., the given
value 𝜀. So, let us add such situations one by one, until we reach the desired
proficiency.
We start with selecting the first situation 𝑠1. If this the only situation we learn, then

the quality of this learning can be described by the value 𝑑𝐻 (𝑆, {𝑠1}) = max
𝑠

𝑑 (𝑠, 𝑠1).
So, we need to find the situation 𝑠1 ∈ 𝑆 for which this value is the smallest possible.
In mathematics, such a point 𝑠1 is known as a center (or a Chebyshev center) of the
set 𝑆.
If for this center, we already have 𝑑𝐻 (𝑆, {𝑠1}) ≤ 𝜀, then we are done. But what

if this inequality has not been reached yet? In this case, as we have mentioned, the
attacker can reach the highest probability of the attack’s success if he/she selects a
situation 𝑠2 for which the distance 𝑑 (𝑠1, 𝑠2) is the largest:

𝑑 (𝑠1, 𝑠2) = max
𝑠

𝑑 (𝑠1, 𝑠).

A natural idea is therefore to train the students on this most-probable attack situation.
This way, the most potentially damaging attack will be prevented.
Similarly:

• if we have already trained the students on situations 𝑠1, . . . , 𝑠𝑛, and we still have
not yet reached the desired level of proficiency 𝜀, i.e., ifmax

𝑠
𝑑 (𝑠, {𝑠1, . . . , 𝑠𝑛}) >

𝜀,
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• then a natural idea is to next train the students on the situation 𝑠𝑛+1 which is
potentially the most damaging, i.e., for which

𝑑 (𝑠𝑛+1, {𝑠1, . . . , 𝑠𝑛}) = max
𝑠

𝑑 (𝑠, {𝑠1, . . . , 𝑠𝑛}). (5)

We continue this procedure until we reach the desired proficiency level, i.e., until we
reach the desired inequality

max
𝑠

𝑑 (𝑠, {𝑠1, . . . , 𝑠𝑛}) ≤ 𝜀. (6)

Comment. Note that we only select the next situation 𝑠𝑛+1 if

max
𝑠

𝑑 (𝑠, {𝑠1, . . . , 𝑠𝑛}) > 𝜀.

In this case, the situation 𝑠𝑛+1 is selected so as to maximize this value. So, we have
𝑑 (𝑠𝑛+1, {𝑠1, . . . , 𝑠𝑛}) > 𝜀, i.e., 𝑑 (𝑠𝑛+1, 𝑠𝑖) > 𝜀 for all 𝑖 ≤ 𝑛.
In general, this means that if we select the training situations 𝑠𝑖 by using the above

algorithm, then we will have 𝑑 (𝑠𝑖 , 𝑠 𝑗 ) > 𝜀 for all 𝑖 ≠ 𝑗 . (So, all training situations
generated by our algorithm are reasonably different.)
We stop when 𝑑𝐻 (𝑆, {𝑠1, . . . , 𝑠𝑛}) ≤ 𝜀. Thus, we have

𝑑 (𝑠𝑖 , 𝑠 𝑗 ) > 𝑑𝐻 (𝑆, {𝑠1, . . . , 𝑠𝑛})

for all 𝑖 ≠ 𝑗 .

3 Natural Algorithm: Visualization

To make it easier to understand, let us give two simple geometric illustrations of
the above algorithm. These examples are similar to examples provided in [6] for a
different application of a similar idea – to selecting benchmarks for testing different
numerical algorithms.

1D example. Let us start with the simplest example of a metric space 𝑆 – namely,
the interval [0, 1]:

0 1/2 1
It is reasonable to select the midpoint 1/2 as 𝑠1:

X
0 1/2 1

There are two points that are the farthest from 𝑠1: the left endpoint 0 and the right
endpoint 1. Without losing generality, let us select 𝑠2 = 0:



6 Christian Servin, Olga Kosheleva, and Vladik Kreinovich

X X
0 1/2 1

Now, 𝑠3 = 1 is the point with the largest value of

𝑑 (𝑠, {𝑠1, 𝑠2}) = min(𝑑 (𝑠, 𝑠1), 𝑑 (𝑠, 𝑠2)) :

X X X
0 1/2 1

At this stage, the midpoints between 0 and 1/2 and between 1/2 and 1 are the
farthest from the set {𝑠1, 𝑠2, 𝑠3} = {0, 1/2, 1}, so, after two stages, we add them both:

X X X X X
0 1/4 1/2 3/4 1

Now, the largest possible value of

𝑑 (𝑠, {𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5}) = 𝑑 (𝑠, {0, 1/4, 1/2, 3/4, 1})

is 1/8. So, at the next stage, we add one of the points in between the existing ones,
e.g., the first one (1/8):

X X X X X X
0 1/8 1/4 1/2 3/4 1

After three more stages, we add all midpoints, so we arrive at the following config-
uration:

X X X X X X X X X
0 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1

2D example: square. For a unit square, we get a similar situation. First, let us pick
the midpoint as 𝑠1:

X

Then, the next four selections 𝑠𝑖 are the vertices:
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X

X

X

X

X

After this, the next four selected points 𝑠𝑖 are he midpoints of the four edges:

X

X

X

X

X

X

X

X

X

Here, we have, in effect, four sub-squares. On the next stage, the same procedure is
repeated for each sub-square, etc.

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

4 Our Algorithm Is Efficient

Our algorithm eventually leads to success. Indeed, the set 𝑆 of possible types of
situations is finite. At each step, we add one more select to this set. So, the number
of steps cannot exceed the number of elements in the set 𝑆 – in other words, this
algorithm will eventually stop.

Our algorithm is asymptotically optimal. Our algorithm is feasible, so it cannot
be optimal – since our problem is NP-hard. Indeed, one can find examples of metric
spaces in which this algorithm does not lead to the optimal arrangement.
It is possible to prove, however, that this algorithm is asymptotically optimal in

the following precise sense. Recall that for each 𝑛, our objective is to minimize the
value 𝑑𝐻 (𝑆, {𝑠1, . . . , 𝑠𝑛}), i.e., make it as close as possible to the smallest possible
value 𝜀𝑛 (𝑆) of this quantity.
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• Due to NP-hardness, we cannot feasibly find the optimizing situations 𝑠𝑖 for which
𝑑𝐻 (𝑆, {𝑠1, . . . , 𝑠𝑛}) is exactly equal to 𝜀𝑛 (𝑆).

• It turns out that our algorithm increases the value 𝜀, crudely speaking, by no more
than a factor of 2.

To be more precise, for the situations 𝑠𝑖 generated by our algorithm, the following
inequality is satisfied:

𝑑𝐻 (𝑆, {𝑠1, . . . , 𝑠𝑛}) ≤ 2𝜀𝑛−1 (𝑆).

Let us prove this inequality by contradiction. Indeed, let us assume that, vice
versa, 𝑑𝐻 (𝑆, {𝑠1, . . . , 𝑠𝑛}) > 2𝜀𝑛−1 (𝑆), i.e., that

𝜀𝑛−1 (𝑆) <
1
2
· 𝑑𝐻 (𝑆, {𝑠1, . . . , 𝑠𝑛}),

and let us show that this assumption leads to a contradiction.
By definition of 𝜀𝑛−1 (𝑆), this means that in the set 𝑆, there exists a 𝜀𝑛−1 (𝑆)-net

𝑠′1, . . . , 𝑠
′
𝑛−1. By the definition of an 𝜀-net, this means, in particular, that for every 𝑖,

there exists an index 𝑖′ for which

𝑑 (𝑠𝑖 , 𝑠′𝑖′) <
1
2
· 𝑑𝐻 (𝑆, {𝑠1, . . . , 𝑠𝑛}).

Let us denote one of such indices by 𝑒(𝑖); then, we have

𝑑 (𝑠𝑖 , 𝑠′𝑒 (𝑖) ) <
1
2
· 𝑑𝐻 (𝑆, {𝑠1, . . . , 𝑠𝑛}).

For two different values 𝑖 and 𝑗 , we cannot have 𝑒(𝑖) = 𝑒( 𝑗) – otherwise, we will
have

𝑑 (𝑠𝑖 , 𝑠 𝑗 ) ≤ 𝑑

(
𝑠𝑖 , 𝑠

′
𝑒 (𝑖)

)
+ 𝑑

(
𝑠′
𝑒 (𝑖) , 𝑠 𝑗

)
<

1
2
· 𝑑𝐻 (𝑆, {𝑠1, . . . , 𝑠𝑛}) +

1
2
· 𝑑𝐻 (𝑆, {𝑠1, . . . , 𝑠𝑛}) = 𝑑𝐻 (𝑆, {𝑠1, . . . , 𝑠𝑛}).

On the other hand, we have shown, in the comment after formula (6), that we must
have

𝑑 (𝑠𝑖 , 𝑠 𝑗 ) > 𝑑𝐻 (𝑆, {𝑠1, . . . , 𝑠𝑛}).

for all 𝑖 ≠ 𝑗 . Thus, for different value 𝑖 ≠ 𝑗 , we must have 𝑒(𝑖) ≠ 𝑒( 𝑗).
So:

• to each of 𝑛 situations 𝑠𝑖 (𝑖 = 1, . . . , 𝑛), there corresponds a different situation 𝑠′𝑒 (𝑖) ,
• however, this is impossible, since this would mean that we have at least 𝑛 different
situations 𝑠′

𝑗
, and we only have 𝑛 − 1 of them.

This contradiction shows that our assumption

𝜀𝑛−1 (𝑆) <
1
2
· 𝑑𝐻 (𝑆, {𝑠1, . . . , 𝑠𝑛})
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is false. So, tthe desired inequality is proven.

5 How Can We Implement This Algorithm

How can we implement the above algorithm: idea. Selecting 𝑠1 may be a problem,
but once we have already selected 𝑠1, . . . , 𝑠𝑛, selecting the next situation 𝑠𝑛+1 is
straightforward. Indeed, as we have mentioned, this is exactly how the actual attacker
naturally selects the way to attack: by selecting the situation 𝑠 for which his/her
probability of success is the largest, i.e., by selecting the situation 𝑠𝑛+1 as described
by the formula (5). Thus, all we have to do to implement this algorithm is to divide
students into competing teams, and let the team which is currently attacking select
the next situation.
This leads to the following way to implement the above algorithm in teaching

cybersecurity.

Resulting teaching strategy. The instructor divides the class into one or more pairs
of sparring mini-teams. In each pair, the teams interchangingly try to attack each
other and to defend their team from a other team’s attack.
This way, no matter what the original situation 𝑠1 is, after each 𝑛 situations

𝑠1, . . . , 𝑠𝑛, the attacking team will naturally select the situation 𝑠𝑛+1 that satisfies the
property (5).

This strategy has been tried – and it works. This teaching strategy has indeed
been tried – under the name of adversarial teaching – and it works; see, e.g., [4, 5].

A similar strategy works in engineering design. Interestingly, a similar approach
works in military engineering as well. For example, according to [9], new fighter
planes are designed as follows – by using a program that simulates dogfights between
different planes:

• The first stage is natural: we consider several possible designs, and for each of
them, we simulate how this design will perform in a possible confrontation with
the fighter planes used by the existing adversaries. We continue doing this until
we find a design that can beat all the possible opponents.

• At first glance, this may seem to be sufficient, but, on second thought, it is not: it
is not enough for a future plane to be better that what the opponent has now, we
need to have a design that will be better than what the opponent will have in the
future. To design such a plane, we perform the second stage of the design process:
namely, we design a plane that will be better than not only the current planes, but
also better than our first-stage design.

• Then, we design a plane that will be better than the second-stage design, etc.

At the end, we get an almost perfect future plane – and this is what is then imple-
mented and tested.

Our geometrical model explains why this strategy works. Adversarial teaching
works, but why it works has, so far, remained largely a mystery.
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In this paper, we explain why it works. Moreover, we explain that this strategy
leads to asymptotically optimal results.

Comment.The above text confirms that a healthy and productive competition between
students is good for education.
This is a known fact of education is general, not just in teaching cybersecurity;

see, e.g., [2]. Moreover, competition is good in general, not just for learning.
Indeed, competition means that if one team is somewhat ahead, the other team

tries to catch up, and vice versa. Without a competition, the folks may stagnate
and not progress too much. Theoretically, this can also happen in a competitive
environment, when two teams’ performance is exactly the same. However, there are
usually many random factors affecting each team’s performance, these factors are
independent, and the probability that two independent random variables are exactly
equal is 0.
Thus, one of the teams will be always slightly ahead, thus providing an incentive

for the other team to catch up – and this way, stagnation will be avoided.

6 How to Best Implement This Algorithm

How to best arrange the competition? In the previous text, we simply explained
why the competition-related arrangement works well. Now that we know that it
works well, a natural next question is: how to best arrange this competition so as to
make the education most effective?
There are many aspects to this question: how many teams to select, how exactly

to divide students into teams, etc. How better to assign students to teams depends
on the affinity between the students. How many situations can be handled within the
same time period depends of the students’ motivations and stress level, etc. In this
section, we deal with only one aspect of this question: into how many teams should
we divide the students, and how many students should be in each team. Is it better
to divide students into two competing teams – the case we analyzed in the previous
text – or is it better to divide them into three or more teams?
For this aspect, it seems reasonable to conclude that, in the first approximation,

e.g., the motivations do not change much whether we divide them into two or three
or more teams, but what changes a lot is interaction between students, their feelings
towards each other – collaboration or competition (and the resulting stress level).
So, in this section, for simplicity, we assume that the students’ feelings are the
main factor that changes when we change the number of teams and the assignment
of students to teams. Based on this assumption, we construct yet another (simple)
mathematical model of the corresponding phenomenon. We will then use this model
to make recommendations about the number of teams and the number of students in
each team.

It is important to take student feelings into account. As all teachers know, ef-
fectiveness is not the only criterion that we use when selecting a teaching strategy.
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We also need to make sure that students feel good about this way of teaching. For
example, if we force the students to study 14 hours a day, they will probably learn
more – but they will feel stressed and upset.
From the viewpoint of student feelings, which way of dividing the students into

teams works better? Let us reformulate this question in precise mathematical terms.

Towards a mathematical model of student feelings. If we divide students into
competing teams, then naturally students have:

• positive feeling towards their teammates, but
• somewhat negative feeling towards their competitors – i.e., students from com-
peting teams.

Vice versa, a student gets:

• positive feedback from other students from his/her team and
• negative feedback feeling from students from competing teams.

Since a priori, we do not have any reason to believe that some of these feedbacks are
more important than others, it is reasonable to view all these positive and negative
feedbacks as equally important. From this viewpoint, for each student:

• each member of his/her team (and this student himself) brings to this student 1
positive feedback unit, and

• each member of each of the competing teams bring to this student 1 negative
feedback unit.

If we add up all these units, we conclude that as a natural measure of the student’s
feelings we can take the difference between the number of other students in this
student’s team (who bring positive feedback) and the number of students in all
competing teams (who bring negative feedback).
Let us describe this in precise terms.

Definitions and the first result.

Definition 1. Let a positive integer 𝑁 be given. This integer will be called the number
of students in the class. The set 𝑆 = {1, . . . , 𝑁} will be called the set of students;
integers from this set will be called students.

• By a division into competing teams, we mean a tuple 𝐷 = (𝑇1, . . . , 𝑇𝑘) of non-
empty subsets of the set of all students such that the sets𝑇𝑖 are disjoint (𝑇𝑗∩𝑇𝑗′ = ∅
when 𝑗 ≠ 𝑗 ′), and their union is equal to the whole set 𝑆: 𝑇1 ∪ . . . ∪ 𝑇𝑘 = 𝑆.

• The sets 𝑇𝑗 are called teams.
• For each student 𝑖, let us denote, by 𝐷 (𝑖), the number 𝑗 of the team that contains

this student: 𝑖 ∈ 𝑇𝑗 = 𝑇𝐷 (𝑖) .
• For each division 𝐷 and for each student 𝑖, by the feeling 𝑓𝑖 (𝐷) of the 𝑖-th student,

we mean the value

𝑓𝑖 (𝐷) = ( |𝑇𝐷 (𝑖) | − 1) − (|𝑇1 | + . . . + |𝑇𝐷 (𝑖)−1 | + |𝑇𝐷 (𝑖)+1 | + . . . + |𝑇𝑘 |), (9)

where |𝑇 | denotes the number of elements in a set 𝑇 .



12 Christian Servin, Olga Kosheleva, and Vladik Kreinovich

• We say that a division 𝐷 ′ is better than a division 𝐷 if for all students 𝑖, we have
𝑓𝑖 (𝐷) ≤ 𝑓𝑖 (𝐷 ′), and for some students 𝑖, we have 𝑓𝑖 (𝐷) < 𝑓𝑖 (𝐷 ′).

• We say that the division 𝐷 is optimal if no other division is better than 𝐷.

Proposition 1. A division 𝐷 is optimal if and only if it divides students into two
teams 𝑘 = 2.

Comment. This result explains that, from the viewpoint of student feelings, the best
way to organize competition is to divide students into two competing teams.

Proof.

1◦. Let us first prove that if any division 𝐷 = (𝑇1, 𝑇2, 𝑇3, . . . , 𝑇𝑘) that divides students
into 𝑘 > 2 teams is not optimal.

To prove this, we will show that the division 𝐷 ′ def= (𝑇1 ∪ 𝑇2, 𝑇3, . . . , 𝑇𝑘) is better
than 𝐷. Indeed, for all students from the teams 𝑇3 through 𝑇𝑘 , the feeling does not
change when we go from 𝐷 to 𝐷 ′, but for students from the teams 𝑇1 and 𝑇2 the
feelings become better:

• students from team 𝑇1 used to get negative feelings from students from the team
𝑇2 (term −|𝑇2 | in 𝑓𝑖 (𝐷)), now this feeling is positive, while all other feelings
remain unchanged;

• similarly, students from team 𝑇2 used to get negative feelings from students from
the team 𝑇1 (term −|𝑇1 | in 𝑓𝑖 (𝐷)), now this feeling is positive, while all other
feelings remain unchanged.

2◦. In Part 1 of this proof, we showed that only divisions into two teams can be
optimal. To complete the proof, let us show that every division into two teams is
optimal.

To prove this, we need to show that no division into two teams can be better that
another division into two teams.
Indeed, let us consider a division 𝐷 = (𝑇1, 𝑇2) into two teams. Without losing

generality, let us assume that the size of the first team is smaller than or equal to the
size of the second team. So, this division divides students into a team 𝑛

def
= |𝑇1 | of

size 𝑛 ≤ 𝑁/2 and the remaining team 𝑇2 of size 𝑁 − 𝑛. In this division:

• students from the first team get the feeling

𝑓𝑖 (𝐷) = (𝑛 − 1) − (𝑁 − 𝑛) = 2𝑛 − 𝑁 − 1 ≤ −1,

while
• students from the second team get the feeling

𝑓𝑖 (𝐷) = ((𝑁 − 𝑛) − 1) − 𝑛 = 𝑁 − 2𝑛 − 1 ≥ −1.

Let us consider three possible cases.
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2.1◦. If two divisions 𝐷 and 𝐷 ′ have the same first-team size 𝑛, then they have the
same feeling for the same number of students, so the sum of all the feelings is the
same – but if 𝐷 ′ was better than 𝐷, we would have

∑
𝑖=1

𝑓𝑖 (𝐷) <
∑
𝑖=1

𝑓𝑖 (𝐷 ′). So, in
this case, 𝐷 cannot be better than 𝐷 ′.

2.2◦. Let us now consider the case when the division 𝐷 ′ = (𝑇 ′
1 , 𝑇

′
2) has more students

in its first team than 𝐷, i.e., when 𝑛′ = |𝑇 ′
1 | > 𝑛 = |𝑇1 |. In this case, 𝑁−2𝑛′ < 𝑁−2𝑛,

so 𝑁 − 2𝑛′ − 1 < 𝑁 − 2𝑛 − 1. So, every student who had a feeling 𝑁 − 2𝑛 ≥ −1 in
the division 𝐷 can only get smaller positive feeling in the division 𝐷 ′. So, such 𝐷 ′

cannot be better than 𝐷.

2.3◦. Finally, if 𝐷 ′ has fewer students in its first team, i.e., if 𝑛′ < 𝑛, then we have
2𝑛′ − 𝑁 < 2𝑛 − 𝑁 , thus 2𝑛′ − 𝑁 − 1 < 2𝑛 − 𝑁 − 1. So in the division 𝐷 ′, some
students will get lower negative feelings than in the division 𝐷.

2.4◦. In all three cases, 𝐷 ′ is not better than 𝐷.
The statement is proven, and so is the proposition.

Comment. This proposition makes sense: even if we divide the class into more than
2 teams, since the bigger team has an advantage, some team will naturally start
cooperating – to increase their chances of succeeding, and we will end up with fewer
and fewer competing teams – until it gets to two.

Visual representation of this result. Let us assume that originally, we had four
competing teams: 𝑇1, 𝑇2, 𝑇3, and 𝑇4. Students have positive feelings towards their
teammates and negative feeling towards students from other teams:
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If we merge teams 𝑇1 and 𝑇2 into a single team 𝑇1 ∪ 𝑇2, then:

• between students of the two original terms 𝑇1 and 𝑇2, the attitude changes from
negative to positive, while

• all other feelings remain the same.

Thus, with this merger, the number of positive connections increases:
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Finally, if we merge teams 𝑇3 and 𝑇4 into a single team 𝑇3 ∪ 𝑇4 – thus leaving only
two competing teams: 𝑇1 ∪ 𝑇2 versus 𝑇3 ∪ 𝑇4 – then:

• between students of the original terms 𝑇3 and 𝑇4, the attitude changes from
negative to positive, while

• all other feelings remain the same.

Thus, with this merger, the number of positive connections increases even further:
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So which division into two teams should we select? A natural idea is to select a
division in which the worst-case feeling

𝑤(𝐷) def= min
𝑖

𝑓𝑖 (𝐷). (10)

is the largest possible. This is described by the following result.

Proposition 2.

• For even 𝑁 , the division with the largest possible value of 𝑤(𝐷) is the division
into two equal size teams.
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• For odd 𝑁 = 2𝑚 + 1, the division with the largest possible value of 𝑤(𝐷) is the
division into teams of size 𝑚 and 𝑚 + 1.

Proof. According to the formulas that we obtained when proving Proposition 1, for
any division into teams of size 𝑛 and 𝑁 − 𝑛, the value 𝑤(𝐷) is equal to

𝑤(𝐷) = min(2𝑛 − 𝑁 − 1, 𝑁 − 2𝑛 − 1).

Since 𝑁 − 2𝑛 = −(2𝑛− 𝑁), this means that 𝑤(𝐷) = −|2𝑛− 𝑁 | − 1. Thus, the largest
possible 𝑤(𝐷) corresponds to the smallest possible value of |2𝑛 − 𝑁 | − 1.
For even𝑁 , the smallest possible value is clearly 0,when 𝑛 = 𝑁/2. For𝑁 = 2𝑚+1,

we cannot have 0, but we can have 1, when 𝑛 = 𝑚. The proposition is proven.

Visual illustration. Let us illustrate the above idea on a simple example. Suppose
that initially, we divided 6 students into two unequal groups: a group of 2 and a
group of 4:

�@ �@ �@ �@ �@ �@-� −?
+

?
+

In this division, each student from the smaller group has:

• negative feelings from 4 students from the larger groups and
• positive feelings from his/her partner in the smaller group.

So here 𝑤(𝐷) = 1 − 3 = −2.
On the other hand, if we instead divide 6 students into two equal groups, then we

will get, for each student:

• 3 negative feelings and
• 2 positive feelings.

So here 𝑤(𝐷) = 2 − 3 = −1m which is larger than −2:
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This example shows from the viewpoint of student feelings, the division into equal
groups is indeed better.
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7 What Next?

What we did. In this paper, we provided a simplified mathematical model that
explains why adversarial teaching works – and show that, in some reasonable sense,
adversarial teaching is indeed a close-to-optimal teaching strategy.
The existence of such an explanation made us (and will hopefully make others)

more confident that this method is a right one.

Can we do better? Teaching with more confidence is good, but it would nice to
have a model that helps us teach better.
For this, we need a more realistic model. Such model should take into account

that some attacks are more difficult to defend against, while others are easier. Such
models should take into account that in adversarial teaching, it is often not individual
against individual, but rather a team against a team – so we need to take into account
team dynamics, etc.
We hope that our simplified model will provide a starting point for developing

such more realistic models.

How to motivate? This paper presents a mathematical demonstration of how adver-
sarial learning can be beneficial for teaching cybersecurity topics. But how to make
sure that adversarial learning is beneficial?
In this paper, we concentrated on the technical part, on what to teach – implicitly

assuming that students have the needed motivation (and, of course, the needed
background).
In reality, while some students are always eager to learn, but for other students,

it is important to keep them motivated. In our experience, when properly organized,
competitive environments like hackathons are great motivators – but, on the other
hand, pedagogy teaches us that many students do not perform well in competitive
environments.
How to best motivate students remains an important open problem.
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