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Abstract
Complex numbers are ubiquitous in physics, they lead to a natural

description of different physical processes and to efficient algorithms for
solving the corresponding problems. But why this seemingly counterin-
tuitive mathematical construction is so natural here? In this paper, we
provide a possible explanation of this phenomenon: namely, we show that
complex numbers appear if take into account that some physical system
are described by derivatives of fractional order and that a physically mean-
ingful analysis of such derivatives naturally leads to complex numbers.

1 Introduction

Formulation of the problem. In many situations ranging from electromag-
netic waves and electric circuits to quantum process, the existing physical de-
scription of a process uses complex numbers; see, e.g., [4, 8]. This ubiquity of
applications is one of the main reasons why complex numbers – at first glance, a
strange and somewhat counterintuitive mathematical construction – are actively
studied at schools and at the universities.

But a natural question is: why are complex numbers ubiquitous in physics?

What we do in this paper. In this paper, we provide a possible explanation
for this ubiquity: namely, we show that complex numbers naturally appear when
we consider physical processes that require derivatives of fractional order.

2 Our Explanation

Need for fractional derivatives. Usual physical equations contain first-
order, second-order (as in Newton’s law), sometimes higher-order derivatives.
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But often, there are processes which are naturally described by derivatives of
fractional order: e.g., of order 1/2; see, e.g., [1, 2, 3, 5, 6, 7] and references
therein.

What are the natural properties of the corresponding fractional differentia-
tion operations Da of fractional order a?

Linearity: first natural property of fractional differentiation. Similar
to the usual differentiation, the fractional derivative of a linear combination
should be equal to the similar linear combination of fractional derivatives:

Da(c1 · f1 + . . . + cn · fn) = c1 ·Da(f1) + . . . + cn ·Da(fn), (1)

for all possible numbers c1, . . . , cn and functions f1, . . . , fn.

Second natural property of fractional differentiation. For each function
f(t), we can define its first derivative – which we will denote by Df , its second
derivative – which we will denote by D2f , etc. For such derivatives, if we
apply a-th order derivative to the b-th order one, this is equivalent to applying
differentiation a + b times:

Da(Dbf) = Da+bf. (2)

It is reasonable to require that this property remains true if we consider frac-
tional values a and b. For example, we should have

D1/2(D1/2f) = Df. (2a)

Shift: a brief reminder. Another physically reasonable property of fractional
derivative is related to the fact that t often means time, and for time, there is no
fixed starting point. If instead of the original starting point for measuring time,
we select another one which is t0 moments earlier, then to all original numerical
values of time, we add the constant t0: instead of the original value t, we get a
new value t′ = t + t0.

In the new units, the description f(t) of the same physical process changes:
each moment of time t in the new time scale corresponds to moment t − t0 in
the original time scale. Thus, in the new scale, this same physical process is
described by a new function f(t− t0). The corresponding transformation of the
function f(t) into a new function f(t− t0) is known as shift:

(St0f)(t) = f(t− t0). (3)

Shift-invariance: third natural property of fractional differentiation.
Since the choice of a starting point for measuring time is just a matter of conven-
tion – it does not change any physics, it makes sense to require that fractional
derivatives do not change if we apply shift. In other words, if we apply a partial
derivative to a shifted function, the result should be the same as when we first

2



differentiate in the original time scale and then shift. In other words, we must
have the following equality:

Da(St0f) = St0(Daf). (4)

One can easily check that the usual differentiation – as well as the operations
of taking second, third, etc. derivatives – are, in this sense, shift-invariant.

What can we derive from these properties. Let us consider a function

fk(t)
def
= exp(k·t). The importance of this function is that shifting it is equivalent

to multiplying it by a constant:

(St0fk)(t) = fk(t− t0) = exp(k · (t− t0)) =

exp(−k · t0) · exp(k · t) = exp(−k · t0) · f + k(t). (5)

Due to shift-invariance, if we denote ga,k(t)
def
= (Dafk)(t), then the fractional

derivative Da(St0fk) of the shifted function St0fk is equal to the shifted version
St0ga,k of the function ga,k(t), i.e., to

(Da(St0fk))(t) = (St0ga,k)(t) = ga,k(t− t0). (6)

On the other hand, since, according to the formula (5), the shifted function
St0fk is simply equal to the original function fk multiplied by a constant

Ck,t0
def
= exp(−k · t0), by linearity, the fractional derivative Da(St0fk) of the

shifted function St0fk is equal to the fractional derivative ga,k = Dafk of fk
multiplied by the same constant Ck,t0 = exp(−k · t0):

(Da(St0fk))(t) = exp(−k · t0) · ga,k(t). (7)

The formula (6) and (7) describe the same quantity, so their right-hand sides
must be equal for all t and for all t0:

ga,k(t− t0) = exp(−k · t0) · ga,k(t). (8)

In particular, for every real number s, by taking t = 0 and s = −t0, we get

ga,k(s) = exp(k · s) · c(a, k), (9)

for some constant c(a, k)
def
= ga,k(0). In other words, we conclude that for the

function fk(t) = exp(k · t), we have

(Dafk)(t) = c(a, k) · fk(t). (10)

This naturally leads to complex numbers. For a = 1/2, the formula (10)
leads to

D1/2fk = c(1/2, k) · fk. (11)
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For a function fk(t) = exp(k · t), its derivative Dfk is equal to k · exp(k · t),
i.e., to k · fk. Due to the above-mentioned second natural property of fractional
differentiation, we have

D1/2(D1/2fk) = (Df) = k · fk. (12)

Due to (11), the left-hand side of the formula (12) is equal to

D1/2(D1/2fk) = D1/2(c(1/2, k) · fk). (13)

Due to linearity, we have

D1/2(D1/2fk) = D1/2(c(1/2, k) · fk) =

c(1/2, k) · (D1/2fk) = c(1/2, k) · (c(1/2, k) · fk) = (c(1/2, k))2 · fk. (14)

By comparing expressions (12) and (14), we conclude that

(c(1/2, k))2 = k. (15)

So, for any decreasing exponential function, with k < 0, the only way to define
fractional derivative satisfying the above natural properties is to use complex (to
be more precise, imaginary) values c(1/2, k), and thus, complex-valued result of
fractional differentiation!

Thus indeed, here complex numbers naturally appear. This provides one of
the possible explanations for the ubiquity of complex numbers.

Comment. Once we allow complex numbers, everything works. One can show
that we then naturally have c(a, k) = ka, i.e.,

Da(exp(k · t)) = ka · exp(k · t). (16)

Since usual functions can be represented as linear combinations of exponential
functions – this is known as Laplace transform – we can thus describe fractional
derivative of all regular functions.
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