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Abstract

In this pedagogical article, we recall the infinities problem of modern
physics, and we show that the natural way to overcome this problem
naturally leads to strings and to quark confinement.

1 Physics’ Problem with Infinities: A Brief Re-
minder

Description of the problem. One of the problems with quantum field theo-
ries is that for many physical properties, we get physically meaningless infinite
values; see, e.g., [1, 2]. This problem did not start with quantum physics, it
is present in non-quantum field theories as well. Following [1], let us briefly
describe this problem on the example of estimating the overall energy of the
electric field generated by a charged elementary particle — e.g., by an electron.

The fact that the electron is an elementary particle means that it does not
consist of any sub-particles, i.e., it does not have any parts that act indepen-
dently. Taking into account special relativity theory, with its requirement that
nothing can travel faster than the speed of light, this implies that an electron
must be a point-wise particle: otherwise, if it was spread over at least two differ-
ent locations, there would be no way for one location to immediately influence
another one, so these two locations would constitute, in effect, two different
sub-particles.

The electric field E(Z) of a point-wise charged particle follow’s Coulomb’s

= 1
law ‘E(f)‘ = const - —, where r is the distance from the particle. It is known

that the energy density p(&) of the electric field at each spatial location ¥ is
L N2 1

proportional to (E(f)) , and thus, p(¥) = const - —. To find the overall energy
T



FE of this field, we can integrate this density over the whole space:

. 1.
E:/p(x)dx:const~/r—4dm.

In the radial coordinate system centered on the electron, we get

<1 <1
E:const~/ —4-47T-r2dr:const-/ — dr. (1)
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The integral of the expression in the right-hand side is equal to —const - —; so,
r

the energy is equal to the difference between the values of this expression at 0
and at infinity:
1 1
E=—const:- | ———].
oo 0
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Here, — = 0 and the ratio — is infinite, so we conclude that the overall energy

is inﬁn??e — and moreover, that there is infinite energy in any small vicinity of
the electron.

If there was such an energy, then, due to another fact from special relativity
—that £ = m-c? — we would have an infinite mass, and this infinite mass would
cause infinite gravitational field — something we clearly do not observe.

Quantum effects do not help much. The above arguments assume that
the usual formulas of physics are valid for all possible distances r, no matter
how small. In quantum physics, there is a length 79 ~= 1073% m — called Planck
length — below which clearly quantum space-time effects cannot be ignored and
thus, all the physics will be different. So, a natural idea is to only consider
distances up to r = rg, i.e., replace the integral (1) with the value

<1
E = const - / 3 dr. (2)
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This integral is equal to E = const - —. This value is no longer infinite, but

g
because the Planck’s length is so small, this value is unrealistically high — clearly,
the electron does not have that much mass.
So, what can we do?

2 Qualitative Idea and Its Consequences

The idea. The infinite (or, alternatively, too large) values come from the need
to consider electron as a point-wise particle, i.e., in mathematical terms, as a 0-
dimensional particle. So, a natural idea is to relax his assumption and consider
higher-dimensional models of elementary particles.

The closest to 0-dimensional are 1-dimensional particles, then 2-dimensional,
finally fully 3-dimensional ones. Let us consider what will be the effect of 1-
and 2-dimensional particles.
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Where — dependence comes from. For a point-wise particle, the effect

of the ﬁeld spreads out. By the time this effect reaches dlstance r, it has be
divided by the area of the sphere of radius 7, i.e., by 4 - r2. This explains why
the electric field of a point-wise particle is inverse proportional to r2.

Similar arguments will help us find the formulas for the electrical field of
1-D and 2-D particles.

1-D particles. For a 1-D particle of length L — which locally looks like a
straight line — the area of distance r from the particle is a cylinder, with the
surface L - 27 - r. Thus, the electric field is inverse proportional to r, i.e.,

. 1 L N2
‘E(i")‘ = const- —, and the energy density p(Z) = const- (E(f)) is proportional
r

to —
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In the cylindrical coordinates, the overall energy E = f p(Z) dZ is equal to

1 <1 1
E:const~/ — dZ = const - L - / —2~27T-rdr:const~/ —dr.
r 0 r 0 r

This integral is proportional to In(r), so the overall energy is proportional to
the difference In(oo) — In(0), i.e. still to infinity.

For large r, we cannot use this formula — for a localized particle, when the
distance is sufficiently larger than its size, the field is the same as for the point-
wise particle, so we can replace infinity with the particle spatial size s. So,
strictly speaking, we get In(s) — In(0), still the infinity.

However, if we take into account the quantum effects and replace the lower
integration bound by 7o, we get In(s) — In(rg). Good news is that even for very
small value rg, its logarithms is quite a reasonable number — so this is a physical
meaningful idea; see, e.g., [3].

The main restriction is that the particle should be 1-D in the vicinity of each
its location, i.e., it cannot have endpoints — otherwise we would have the same
infinity as in the pointwise case. So, if we are interested in particles located in a
small spatial region, a particle must form a closed loop — and this is exactly what
strings are. Thus, this idea explains, on the qualitative level, why strings appear
in quantum physics, and why they are so successful in eliminating infinities.

2-D particles. For a 2-D particle of area A — which locally looks like a small
piece of a plane — the area of distance r from the particle is two parallel planes
at this distance, at two sides of the particle — of total area 2A. Thus, locally, the
field is simply constant. Thus, the overall density is constant, and the energy is
finite.

The constant field leads to the constant force field F' = const, which, in
turn, has the following side effect: that to get separated by a distance d, we
need to spend the energy F' - d. Thus, no matter how much initial energy Ej
particles have, they will never fully separate: their separation will only reach
the distance d = Ey/F and then stop. This is exactly what is observed with
quarks under the name of quark confinement: they can get closer to each other



or further away from each other, but they can never separate from each other
— that is why we can see them, e.g., inside protons (as so-called partons) — but
we cannot observe a free quark.
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