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How to Find the Dependence Based on
Measurements with Unknown Accuracy:
Towards a Theoretical Justification for Midpoint
and Convex-Combination Interval Techniques
and Their Generalizations

Somsak Chanaim and Vladik Kreinovich

Abstract In practice, we often need to find regression parameters in situations when
for some of the values, we have several results of measuring this same value. If
we know the accuracy of each of these measurements, then we can use the usual
statistical techniques to combine the measurement results into a single estimate for
the corresponding value. In some cases, however, we do not know these accuracies,
so what can we do? In this paper, we describe two natural approaches to solving
this problem. In addition to describing general techniques, our results also provide
a theoretical explanation for several semi-heuristic ideas proposed for solving an
important particular case of this problem – the case when we deal with interval
uncertainty.

1 Formulation of the Problem

General problem. In many practical situations:

• we know that the general form of the dependence of a quantity y on quantities
x1, . . . ,xn, i.e., we know that y= f (x1, . . . ,xn,c1, . . . ,cm) for some known function
f (x1, . . . ,xn,c1, . . . ,cm), but

• we do not know the values of the parameters c1, . . . ,cm; these values need to
be determined empirically, from the known results of observations and measure-
ments.

This general situation is known as regression.
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A simple example. The simplest example if when n = 1, and y is simply propor-
tional to x1, with an unknown coefficient of proportionality c1, so that y = c1 ·x1. In
this case, we have m = 1 parameter ci, and f (x1,c1) = c1 · x1.

Econometric example. We may want to know the parameter β that describes, for
a given stock, how the difference r− r f between the stock’s rate of return r and
the risk-free interest rate r f depends on the difference rm− r f between the overall
market’s rate of return rm and the value r f :

r− r f = β · (rm− r f ).

General problem: usual case. Usually, we have several (K) cases k = 1, . . . ,K in
each of which we measure xi and y, resulting in the values x(k)1 , . . . ,x(k)n and y(k).
In this case, to find the values of the parameters ci, a reasonable idea is to apply
the Least Squares method (see, e.g., [5]), i.e., to find the values c1, . . . ,cm of the
parameters that minimize the expression

K

∑
k=1

(
y(k)− f

(
x(k)1 , . . . ,x(k)n ,c1, . . . ,cm

))2
. (1)

Alternatively, we can minimize the sum of the absolute values of the differences
y(k)− f

(
x(k)1 , . . . ,x(k)n ,c1, . . . ,cm

)
, or any other appropriate objective function.

What if for each case, we have several measurement results? Sometimes, in each
case k, we have several different measurement results of each of the variables:

• for each k and i, instead of a single measurement result x(k)i , we have several
values x(k)i1 , . . . ,x(k)ivi

measured, in general, by several different measuring instru-
ments, and

• for each k, instead of a single result y(k) of measuring y, we have several values
y(k)1 , . . . ,y(k)v measured, in general, by several different measuring instruments.

In such situation, a natural idea is to do the following:

• first, for each k and for each i, we use all the results x(k)i1 , . . . ,x(k)ivi
of measuring xi

to come up with a single estimate x(k)i ;
• then, for each k, we use all the results y(k)1 , . . . ,y(k)v of measuring y to come up

with a single estimate y(k);
• then, we find the values of the parameters c1, . . . ,cm that minimize the objective

function (1) – or the corresponding alternative objective function.

To implement this idea, we need to be able to combine several estimates into a single
one.

Econometric example. The stock price fluctuates during the day. The usual eco-
nomic assumption is that:
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• on any day, there is the fair price of the stock – the price that reflects its current
value and its prospects;

• this fair price changes rarely – definitely rarely several times a day, it only
changes based on the new information;

• on the other hand, the observed minute-by-minute price changes all the time,
because it is obtained by adding some random fluctuations to the fair price.

In this example, we do not know the fair daily price of the stock xi, but we can
measure several characteristics that provide an approximate description of this fair
price: the smallest daily price x(k)i1 , the largest daily price x(k)i2 , the closing price x(k)i3 ,

the starting price x(k)i4 , etc. If we limit ourselves to these four characteristics, then we
have vi = 4.

Instead of these four measurement results, we can use only two: the smallest
daily price x(k)i1 and the largest daily price x(k)i2 . In this case, what we know is an

interval
[
x(k)i1 ,x(k)i2

]
that contains the actual (unknown) fair price x(k)i on day k.

Comment. There are other practical examples where, as a result of measurements,
we get a lower bound x(k)i1 and an upper bound x(k)i2 for the desired quantity x(k)i , i.e.,

where, as a result of the measurements, we get an interval
[
x(k)i1 ,x(k)i2

]
that contains

the actual (unknown) value x(k)i .

We can naturally combine measurement results when we know the accuracy of
each measurement. In many practical situations, we know the accuracy of different
measuring instruments. For example:

• for each input i and for each instrument j = 1, . . . ,vi used to measure xi, we know
the corresponding standard deviation σi j, and

• for each instrument j = 1, . . . ,v used to measure y, we know the corresponding
standard deviation σ j.

In this case, a natural idea for estimating x(k)i is to use the least squares approach,
i.e., to minimize the sum

vi

∑
j=1

(
x(k)i − x(k)i j

)2

σ2
i j

.

This minimization results in the estimate

x(k)i =
vi

∑
j=1

wi j · x(k)i j , (2)

where

wi j =
σ
−2
i j

vi
∑

j′=1
σ
−2
i j′

. (3)
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Similarly, a natural idea for estimating y(k) is to use the least squares approach, i.e.,
to minimize the sum

v

∑
j=1

(
y(k)− y(k)j

)2

σ2
j

.

This minimization results in the estimate

y(k) =
v

∑
j=1

w j · y(k)j , (4)

where

w j =
σ
−2
j

v
∑

j′=1
σ
−2
j′

. (5)

Comment. In both cases, the coefficients w add to 1:
vi
∑
j=1

wi j = 1 and
v
∑
j=1

w j = 1.

Remaining problem. In some cases – e.g., in the econometric example – we do not
know the corresponding accuracies. What shall we do?

This is a problem that we consider in this paper. Specifically, we describe two
natural general solutions – and we explain how each of them is related to previ-
ously proposed methods. It turns out that this way, several previous proposed semi-
empirical methods can be theoretically justified.

2 First Approach: Laplace’s Indeterminacy Principle

Main idea. In its most general form, Laplace’s Indeterminacy Principle states that
if we have no reason to assume that one quantity is smaller or larger than the other
one, then it is reasonable to assume that these two quantities are equal to each other;
see, e.g., [4].

Let us apply this idea to our problem. For each i, we have several unknown values
σi j. Since we have no reason to believe that one of these values is larger, we conclude
that all these values are equal to each other: σi1 = σi2 = . . . In this case, formula (3)

leads to wi j =
1
vi

, and the estimate (2) becomes simply the arithmetic mean

x(k)i =
1
vi
·

vi

∑
j=1

x(k)i j . (6)

Similarly, since we have no reason to believe that one of the values σ j is larger, we
conclude that all these values are equal to each other: σ1 = σ2 = . . . In this case,

formula (5) leads to w j =
1
v

, and the estimate (4) becomes the arithmetic mean
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y(k) =
1
v
·

v

∑
j=1

y(k)j . (7)

Interval case. In the case when the two estimates are the two endpoints of the
interval, formulas (6)-(7) result in a midpoint of this interval. Thus, in situations
when we only know the intervals

[
x(k)i1 ,x(k)i2

]
and

[
y(k)1 ,y(k)2

]
containing the desired

values xi and y, this approach recommends applying the regression technique to

midpoints x(k)i =
x(k)i1 + x(k)i2

2
and y(k) =

y(k)1 + y(k)2
2

of these intervals.

Comment. The use of midpoints is exactly what was proposed in [1]. Thus, our
analysis provides a theoretical explanation for this semi-heuristic method.

3 Second Approach: Using the Known Dependence Between xi
and y

Alternative idea. We consider the case when do not know the measurement accu-
racies σi j and σ j, so we cannot use these accuracies to find the coefficients wi j and
w j. In other words, we do not know which linear combinations of the measurement
results most adequately represent the actual values x(k)i and y(k).

A natural idea is to take into account that the actual (unknown) values xi and
y should satisfy the formula y = f (x1, . . . ,xn,c1, . . . ,cm). Thus, it is reasonable to
select the coefficients wi j and w j for which the resulting linear combination y(k) is

as close as possible to the value f
(

x(k)1 , . . . ,x(k)n ,c1, . . . ,cm

)
. To be more precise,

we find the parameters c1, . . . ,cm and the coefficients wi j and w j from the condition
that the expression (1) (or any other selected objective function) attains its smallest
possible value, where x(k)i and y(k) are determined by the formulas (2) and (4).

In this case, the minimized objective function (1) takes the form

K

∑
k=1

(
v

∑
j=1

w j · y(k)j − f

(
v1

∑
j=1

w1 j · x(k)1 j , . . . ,
vn

∑
j=1

wn j · x(k)n j ,c1, . . . ,cm

))2

.

Interval case. In the interval case, when we know the intervals
[
x(k)i1 ,x(k)i2

]
and[

y(k)1 ,y(k)2

]
, the idea is to select appropriate convex combinations x(k)i = wi1 · x(k)i1 +

(1−wi1) · x(k)i2 and y(k) = w1 · y(k)1 +(1−w1) · y(k)2 , i.e., coefficients for which the
following expression is the smallest possible:

K

∑
k=1

(
w1 · y(k)1 +(1−w1) · y(k)2 − f

(
w11 · x(k)11 +(1−w11) · x(k)12 , . . . ,c1, . . .

))2
.



6 Somsak Chanaim and Vladik Kreinovich

Comment. This idea of using convex combinations has indeed been proposed and
successfully used; see, e.g., [2, 3]. Thus, our analysis provides a theoretical expla-
nation for this semi-heuristic idea as well.
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