
University of Texas at El Paso University of Texas at El Paso

ScholarWorks@UTEP ScholarWorks@UTEP

Departmental Technical Reports (CS) Computer Science

10-2020

Data Analytics Beyond Traditional Probabilistic Approach to Data Analytics Beyond Traditional Probabilistic Approach to

Uncertainty Uncertainty

Vladik Kreinovich
The University of Texas at El Paso, vladik@utep.edu

Follow this and additional works at: https://scholarworks.utep.edu/cs_techrep

 Part of the Computer Sciences Commons, and the Data Science Commons

Comments:

Technical Report: UTEP-CS-20-107

Recommended Citation Recommended Citation
Kreinovich, Vladik, "Data Analytics Beyond Traditional Probabilistic Approach to Uncertainty" (2020).
Departmental Technical Reports (CS). 1530.
https://scholarworks.utep.edu/cs_techrep/1530

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UTEP. It has
been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of
ScholarWorks@UTEP. For more information, please contact lweber@utep.edu.

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/cs_techrep
https://scholarworks.utep.edu/computer
https://scholarworks.utep.edu/cs_techrep?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1530&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1530&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1429?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1530&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/cs_techrep/1530?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1530&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

Data Analytics Beyond Traditional Probabilistic

Approach to Uncertainty

Vladik Kreinovich
Department of Computer Science
University of Texas at El Paso

500 W. University
El Paso, TX 79968, USA

vladik@utep.edu

Abstract

Data for processing mostly comes from measurements, and measure-
ments are never absolutely accurate: there is always the “measurement
error” – the difference between the measurement result and the actual
(unknown) value of the measured quantity. In many applications, it is
important to find out how these measurement errors affect the accuracy
of the result of data processing. Traditional data processing techniques
implicitly assume that we know the probability distributions. In many
practical situations, however, we only have partial information about these
distributions. In some cases, all we know is the upper bound on the abso-
lute value of the measurement error. In other cases, data comes not from
measurements but from expert estimates. In this paper, we explain how
to estimate the accuracy of the results of data processing in all these sit-
uations. We tried to explain not only what methods can be used, but also
why these methods have been proposed and have been successfully used.
We hope that this overview will be helpful both to users solving practical
problems and to researchers interested in extending and improving the
existing techniques.

Keywords: data processing, uncertainty, interval uncertainty, impre-
cise probabilities, fuzzy uncertainty, machine learning, deep learning

1 Why go beyond traditional probabilistic ap-
proach to uncertainty

Why do we need data processing. What do we want? We want to know
what will happen in the future – and we want to decide what to do to make the
future the most beneficial. For example, we want to be able to predict tomor-
row’s weather – and we want to find the best way to regulate the temperature
and humidity in our offices. We want to know where a spaceship will be several

1

weeks from now – and if needed, what is the best way to correct its trajectory.
To be able to predict the future, we need to know the current state of the

world, and we need to know the equations that describe how this state will
change. For example, to predict the trajectory of a spaceship:

• we need to know its current location,

• we need to know its distance from the Sun and from other celestial bodies,
and

• we can then use Newton’s equations to predict its future locations.

The current state of the world can be described by the values of different
quantities. Some of these quantities we can measure directly – e.g., we can
measure the current temperature and humidity at different locations. Some of
the quantities we need to measure indirectly – e.g., we can compute the distance
from the spaceship to different celestial bodies if we know the location of the
spaceship and the locations of the bodies.

What we get from direct measurements is what is called data, and when we
process this data – whether to compute the current values of different quantities,
to predict their future values, or to find the parameters of the influence that
will lead to better future values – this is what is called data processing.

Uncertainty is ubiquitous. Most of the data comes from measurements, and
measurements are never 100% accurate: the result x̃ of measuring a quantity x
is, in general, different from the actual (unknown) value x of this quantity; see,
e.g., [13]. Why is uncertainty ubiquitous?

• There are usually physical reasons for the resulting uncertainty: there
are some factors that we cannot take into account – what we call noise
– that affect the measurement results. For example, in many accurate
measurements, the thermal noise provides a random – thus unpredictable
– effect.

• There are also mathematical reasons for uncertainty: each measuring in-
strument can have only finitely many possible results – e.g., it produced
finitely many bits, and with b bits, we can form only 2b possible sequences.
On the other hand, the actual value can be any real number – at least
any real number from some interval – and there are infinitely many real
numbers on each interval. So, inevitably, the measurement result should
be, in general, different from the actual value.

It is important to take uncertainty into account when processing data.
In general, in data processing, we apply some algorithm to the input data and
get the result. Let us denote the inputs by x1, . . . , xn, and the algorithm by f .
In these terms, the result y of data processing has the form y = f(x1, . . . , xn).

We apply this data processing algorithm to the measurement results
x̃1, . . . , x̃n and get the estimate ỹ = f (x̃1, . . . , x̃n) for the desired quantity y.

2

Even in the ideal case, when the algorithm f describes the exact relation between
the actual values of the quantities x1, . . . , xn, and y, since the measurement re-
sults x̃i are, in general, different from the actual value xi, our estimate

ỹ = f (x̃1, . . . , x̃n)

is, in general, different from the desired value

y = f(x1, . . . , xn).

In many practical situations, it is important to know how accurate it is. For
example, if we want a spaceship to get close to an asteroid to take photos, and
we estimated the future distance to be 100 m, then:

• if it is 100± 10, this is great, but

• if this is 100± 200, then maybe the spaceship will crash into the asteroid.

Similarly, if we estimate that an oil field contains 300 million tons of oil, then:

• if it is 300± 100, we can start exploring right away, but

• if it is 300±400, maybe there is no oil at all, so we better perform additional
measurements before we invest a lot of money into exploration.

Traditional probabilistic approach to uncertainty. How can we deter-
mine the measurement accuracy? A natural idea is to calibrate each measuring
instrument, i.e., to compare, several times, the results of measuring the same
quantity:

• by this instrument and

• by a much more accurate instrument (known as a standard instrument),
so much more accurate that we can ignore its own measurement uncer-
tainty and safely assume that this standard instrument produced accurate
results.

Based on several observed differences between the values measured by the cali-
brated measuring instrument and the standard one:

• we can find possible values of the measurement error ∆x
def
= x̃− x, and

• we can also find the frequency of different possible values ∆x.

In other words, we can find the probability distribution of the measurement
error ∆x.

This possibility underlies the traditional probabilistic approach to uncer-
tainty, when we assume that we know the probability distributions for all the

input measurement errors ∆xi
def
= x̃i − xi.

3

Need to go beyond the probabilistic approach: interval uncertainty.
While in principle, in most practical situations, it is possible to determine the
probability distributions of all measurement errors, there are two important
classes of situations when this is not done.

The first class is state-of-the-art measurements. Calibration of a measuring
instrument requires that we have another instrument which is much more accu-
rate. But what is the instrument that we use is the best we have? For example,
it would be nice to have a five times more accurate telescope to float near the
Hubble telescope – but the Hubble telescope is the best we have.

In such situations, we do not know the probability distribution of the mea-
surement error. At best, we know the upper bound ∆ on the absolute value
|∆x| of the measurement error:

|∆x| ≤ ∆.

And this upper bound we must have: otherwise, if there is no upper bound
and thus, for each measurement result, the actual value can be arbitrarily large
or arbitrarily small, this is not a measurement, this is a wild guess.

Once we know the measurement result x̃ and the upper bound ∆ on the

absolute value of the measurement error ∆x
def
= x̃ − x, the only information

that we can conclude about the actual (unknown) value x is that this value is
contained in an interval [x̃ − ∆, x̃ + ∆]. Because of this, such uncertainty is
known as interval uncertainty; see, e.g., [3, 8, 10, 13].

Another class of situations when we do not know probabilities – much more
common and much more frequent class – is when we perform measurements
during manufacturing. In principle, in such situations, we can calibrate every
single measuring instruments – but that will cost a lot of money:

• many sensors are now very cheap, high school kids use a lot of sensors in
their robotic projects, but

• calibrating each sensor means using a complex highly-accurate measuring
instrument requiring lots of costly maintenance; it usually means bringing
our sensor to a location where this standard instrument is placed; all this
is very expensive.

Because of this high cost, most sensors are not individually calibrated, we do
not know the corresponding probability distribution – we only know the up-
per bound on the absolute value of the measurement error, the upper bound
provided by the manufacturer of this measuring instrument.

But why cannot we use probabilistic techniques? Situations when we
do not know the exact probability distribution are common in statistics. In
particular, there are many situations in which we have several alternatives, and
we have no information about the probability of each alternative. Since we have
no reason to assume that the probability of one alternative is larger than the
probability of another alternative, a reasonable idea is to assign equal probabil-
ities to all alternatives. This natural idea is known as Laplace’s Indeterminacy

4

Principle, and it is a particular case of the more general Maximum Entropy
approach; see, e.g., [4].

Similarly, if all we know is that a quantity is located somewhere on the
interval, and we have no reason to conclude that some values from this interval
are more probable and some are less probable, a reasonable idea is to assume
that all the values from the interval are equally probable, i.e., that we have
a uniform distribution on this interval. If we have several variables, and we
have no information about their dependence, then it is reasonable to assume
that they are independent – and this is exactly what the Maximum Entropy
approach concludes in this case.

At first glance, this sounds like a reasonable approach, and in many prob-
lems, it works well, but, as we will show, in uncertainty quantification, this
idea does not work. Indeed, let us consider a very simple example in which the
algorithm f simply add up n values, i.e., when we compute y = x1 + . . . + xn.
Suppose that for each i, the result x̃i of measuring the quantity xi is simply 0,
and the upper bound on the measurement error is ∆i = 1. This means that
each value xi is located somewhere on the interval [−1, 1].

In this case, the sum y takes the largest value when each of the terms xi
attains its largest value 1, and this largest value is n. Similarly, the smallest
possible value y is attained when each of the terms xi attains its smallest value
−1, so this smallest value of y is −n. Thus, the range of possible values of y is

[−n, n].

What if we use Laplace’s principle? In this case, we assume that each xi is
uniformly distributed on the interval [−1, 1], and all these variables are inde-
pendent. Thus, for large n, according to the Central Limit Theorem (see, e.g.,
[14]), the distribution of the sum y is close to normal distribution. For each xi
the mean is 0 and the variance is 1/3, so:

• the mean µ of the sum y is the sum of 0s, i.e., 0, and

• the variance of the sum y is the sum of the variances, i.e., n/3.

Thus, the standard deviation σ of y is proportional to
√
n.

It is known that with very high probability, all the values of a normally
distributed random variable are located, in the interval [µ− k · σ, µ+ k · σ]: e.g.
for k = 6 the probability to be outside this interval is ≈ 10−8. Here, µ = 0,
σ = c ·

√
n for some c, so we conclude that with high confidence, the value y is

bounded by 6c ·
√
n. But we know that y can take value n which, for large n, is

much larger than const ·
√
n.

This shows that for the purposes of uncertainty quantification, we cannot just
select one possible probability distribution our of many possible ones and ignore
other possible distributions – this can drastically underestimate the inaccuracy
of the results of data processing – and thus, potentially lead to a disaster.

Need to go beyond the probabilistic approach: imprecise probabili-
ties. So far, we considered two types of possible situations:

5

• situations when we perform the full calibration and thus, we know the
probability distribution of the measurement errors,

• situations when we do not perform any calibration, and thus, have no
information about the corresponding probabilities – all we know is the
interval of possible values of the measurement error.

In practice, we also sometimes encounter intermediate situations, when we per-
form some calibration, but not enough to uniquely determine the probability
distributions. As a result, we only have partial information about the prob-
abilities – i.e., we have several possible probability distributions which are all
consistent with our calibration results. Such situations are known as situations
with imprecise probabilities; see, e.g., [11] and references therein.

Need to go beyond the probabilistic approach: fuzzy case. In many
practical situations, instead of measurement results, we get expert estimates.
This is not typical in manufacturing, but this is a usual situation in medicine,
in meteorology, in biology, etc. These estimates often use imprecise (“fuzzy”)
words from natural language like “small”, “about 1.5”, etc. It is desirable to
use these expert estimates as inputs in data processing, but how? Computers
are good in processing numbers, but, as everyone knows, they are not yet as
good in processing natural language.

To handle such fuzzy knowledge, we need to use special techniques – which
are known under the general name of fuzzy techniques; see, e.g., [5, 9, 12, 15].

What we do in this chapter. In this chapter, we briefly explain how (and
why) to take these different types of beyond-traditional-probabilistic uncertainty
into account when processing data.

2 Case of probabilistic uncertainty: reminder

Why do we need to describe the case of probabilistic uncertainty. To
explain techniques for dealing with non-traditional types of uncertainty, let us
first briefly recall how traditional probabilistic uncertainty is handled in data
processing.

Data processing under probabilistic uncertainty: exact formulation
of the problem. Probabilistic uncertainty means that we know:

• the data processing algorithm y = f(x1, . . . , xn);

• the measurement results x̃1, . . . , x̃n; and

• the probability distributions ρi(∆xi) describing the probabilities of differ-
ent values of the measurement error ∆xi = x̃i − xi.

We want to find the probability distribution for the value y = f(x1, . . . , xn).

Bias is usually taken care of. In some cases, the mean value of the mea-
surement error is different from 0. In mathematical terms, this means that the

6

corresponding distribution has a bias. This happens: a clock may show time 2
minutes ahead, etc. In such situations, it makes sense to re-scale the readings
of the measuring instrument – by subtracting this mean value. For example, for
the clock, we subtract 2 minutes from all its readings.

As a result, we have a probability distribution in which the mean value of
the measurement error is 0.

General case: Monte-Carlo simulations. For each i, we know the value x̃i,
and we know the probability distribution ρi(x̃i − xi) for the difference between
the measurement result x̃i and the actual (unknown) value xi of the correspond-
ing quantity. Thus, the formula ρi(x̃i − xi) provides a probability distribution
for xi.

So, to find the probability distribution for y, we can do the following: several
(N) times k = 1, . . . , N :

• we simulate each random variable ∆x
(k)
i distributed according to the i-th

given probability distribution ρi(∆xi);

• we simulate the values of xi as x
(k)
i = x̃i −∆x

(k)
i ; and

• we apply the data processing algorithm f to the simulated values, resulting

in y(k)
def
= f

(
x
(k)
1 , . . . , x

(k)
n

)
.

Since the values x
(k)
i follow the exact same probability distribution as the actual

values xi, the simulated values y(k) follow the exact same probability distribution
as the desired quantity y. Thus, by analyzing the sample y(1), . . . , y(N), we can
find all the characteristics of the desired probability distribution for y.

This simulation-based technique, when we literally simulate the measure-
ment errors, is known as Monte-Carlo simulations.

How accurate are Monte-Carlo simulations? It is known (see, e.g., [14])
that the relative accuracy ε of Monte-Carlo technique – as any accuracy of
estimating a characteristic of a random variable from a sample of size N – is
proportional to ε ∼ 1/

√
N . Thus, to get the characteristics of ∆y = ỹ − y with

accuracy ε, we need to perform N ∼ ε−2 simulations.
In particular, to get accuracy 10%, we need to perform N = 100 simulations.

Limitations of Monte-Carlo simulations. The data processing algorithm
can be very complicated and time-consuming. To use Monta-Carlo simulations,
we need to apply this algorithm N times. As a result, determining the accuracy
of the result of data processing may require 100 time more computation time
than computations themselves.

Even after such a long time, all we get is a very crude approximate estimation
of accuracy – and to get a more accurate estimation, we need to perform even
more computations! How can we perform computations faster?

7

Possibility of linearization. A possibility to speed up uncertainty estimations
comes from the fact that measurement errors are usually relatively small:

∆x� x :

• rough measurements can have accuracy 10%,

• more accurate measurements can have accuracy 3%, 1%, and even higher.

The expressions f(x1, . . . , xn) are usually smooth. In such situations, we can
expand the expression for

∆y = ỹ − y = f (x̃1, . . . , x̃n)− f(x1, . . . , xn) =

f (x̃1, . . . , x̃n)− f (x̃1 −∆x1, . . . , x̃n −∆xn)

in Taylor series and keep only linear terms in this expansion – and ignore
quadratic and higher order terms. Indeed:

• If ∆xi ≈ 10%, then (∆xi)
2 ≈ 1%� ∆xi.

• If ∆xi ≈ 1%, then (∆xi)
2 ≈ 0.01%� ∆xi, etc.

Thus, we get

∆y =

n∑
i=1

ci ·∆xi, (1)

where we denoted ci
def
=

∂f

∂xi
.

How this can speed up computations. In the formula (1), the only values
depending on the data processing algorithm are partial derivatives ci. In some
cases, we have explicit formula for these partial derivatives. In general, we can
estimate these partial derivatives by using numerical differentiation. Namely,
by definition, the derivative is a limit

∂f

∂xi
= lim

h→0

f (x̃1, . . . , x̃i−1, x̃i + h, x̃i+1, . . . , x̃n)− ỹ
h

.

Limit means that for small h, we have

ci =
∂f

∂xi
≈ f (x̃1, . . . , x̃i−1, x̃i + h, x̃i+1, . . . , x̃n)− ỹ

h
, (2)

and the smaller h, the higher the accuracy of this approximation. Estimation
of ci by using formula (2) is known as numerical differentiation.

To estimate all the value c1, . . . , cn this way, we need to call the algorithm f :

• first, to compute the estimate ỹ, and

8

• then n more times to compute the values

f (x̃1, . . . , x̃i−1, x̃i + h, x̃i+1, . . . , x̃n)

for i = 1, . . . , n,

to the total of n+ 1 times.
When n + 1 is smaller than the value N corresponding to desired accuracy

– e.g., when n + 1 < 100, the resulting computations are much faster than by
using the general Monte-Carlo simulations.

Comment. Of course, in the linearized approach, we still need to run N
(e.g., 100) simulations, but these simulations no longer require calling f , so
they are fast.

Additional time saving: ubiquity of normal distributions. When n is
large, and all error components are of the same order of magnitude, we can
use the Central Limit Theorem, according to which the distribution of the sum
of the large number of independent similarly distributed random variables is
close to Gaussian (normal). (To be more precise, the theorem states that this
distribution tends to normal when the number n of terms in this sum tends to
infinity.)

Thus, for large n, we can safely conclude that the value ∆y is normally
distributed. Also, since all the components ∆xi have 0 mean, their linear com-
bination ∆y also has a zero mean. A normal distribution is uniquely determined
by its mean and its standard deviation σ. Since here, the mean is 0, all we need
to find is the standard deviation. This saves us computation time – since we
only need to compute one charateristic of the probability distribution.

Another simplification comes from the fact that, based on the formula (1),
we can conclude that

σ2 =

n∑
i=1

c2i · σ2
i , hence σ =

√√√√ n∑
i=1

c2i · σ2
i ,

where σi is the standard deviation of ∆xi. Thus, there is no need for Monte-
Carlo simulations here: once we compute σi, we can then use this explicit for-
mula for σ – and, by the way, we will get the exact value of σ, while simulations
will only lead to an approximate estimate.

Comment. The possibility to use normal distributions is not limited to the cases
when n is large. In many cases, for each measuring instrument, the correspond-
ing measurement error ∆xi itself comes from the joint effect of several error
components of approximately the same size and is, thus, itself normal. In such
situations, ∆y is also normally distributed – as a linear combination of several
independent normally distributed random variables.

9

3 Case of interval uncertainty

What is interval uncertainty: reminder. In some situations, all we know
about each measurement error ∆xi is that it can take any value from the interval
[−∆i,∆i], and we do not have any information about the probability of different
values from this interval. As a result, the actual value xi of the corresponding
quantity can take any value from the interval [x̃i −∆i, x̃i + ∆i].

Different values xi from these intervals lead, in general, to different values
of y = f(x1, . . . , xn). All we can compute is the range of possible values of y,
i.e., the set

{f(x1, . . . , xn) : x1 ∈ [x̃1 −∆1, x̃1 + ∆1] , . . . , xn ∈ [x̃n −∆n, x̃n + ∆n]} .

The data processing algorithm is usually continuous. The range of a con-
tinuous function on a connected set is also connected, so this range is also an
interval [y, y].

Computing the endpoints of this interval is known as interval computations;
see, e.g., [3, 8, 10].

Let us formulate this problem in precise terms.

Data processing under interval uncertainty: exact formulation of the
problem. Interval uncertainty means that we know:

• the data processing algorithm y = f(x1, . . . , xn);

• the measurement results x̃1, . . . , x̃n; and

• the upper bounds ∆i on the absolute values of the corresponding mea-
surement errors ∆xi = x̃i − xi.

We want to find the endpoints of the interval

[y, y] =

{f(x1, . . . , xn) : x1 ∈ [x̃1 −∆1, x̃1 + ∆1] , . . . , xn ∈ [x̃n −∆n, x̃n + ∆n]} . (3)

In general, this problem is not feasible. It is known that, in general, this
problem is NP-hard – meaning that, unless P = NP (which most computer
scientists believe to be impossible), no feasible algorithm can always provide a
solution to this problem; see, e.g., [7].

In the linearized case, the problem becomes feasible. To solve the
interval computations problem, we can take into account that, in practice, mea-
surement errors are relatively small, and thus, for ∆y, we can use a linearized
formula (1). To find the range of possible values of ∆y, we need to find the
largest and the smallest values of this expression (1).

The sum attains its largest value when each of the terms ci · ∆xi is the
largest:

10

• When ci ≥ 0, the term ci ·∆xi is an increasing function of ∆xi. Thus, its
largest possible value is attained when ∆xi ∈ [−∆i,∆i] attains its largest
possible value ∆xi = ∆i. In this case, the term ci ·∆xi takes the form

ci ·∆i.

• When ci ≤ 0, the term ci ·∆xi is a decreasing function of ∆xi. Thus, its
largest possible value is attained when ∆xi ∈ [−∆i,∆i] attains its smallest
possible value ∆xi = −∆i. In this case, the term ci ·∆xi takes the form

−ci ·∆i.

Both expressions can be described by a single formula |ci| ·∆i. Thus, the largest
possible value of ∆y is equal to

∆
def
=

n∑
i=1

|ci| ·∆i. (4)

Similarly, we can prove that the smallest possible value of ∆y is equal to −∆.
So, the range of ∆y has the form [−∆,∆]. To find this range, it is sufficient to
compute the value ∆.

A straightforward way to compute ∆. A straightforward way to compute
∆ is to compute the partial derivatives by using the formula (2), and then use
the formula (4).

Comment. This is similar to computing σ2 in the case of normal distributions.

Limitations of the straightforward approach. When the number of inputs
n is large, and the data processing algorithms is complicated, in the straightfor-
ward approach, to compute all partial derivatives, we need to call the algorithm
f many (n+ 1) times. For large n – e.g., when n is equal to several thousands
– this is not realistic.

How can we compute ∆ faster?

Cauchy-based techniques. We cannot directly use Monte-Carlo simulations –
since we do not know the probability distributions for ∆xi. However, it turns out
that we can use Monte-Carlo simulations indirectly, by using so-called Cauchy
distributions, for which the probability density function is proportional to

1

1 +
x2

∆2

.

This distribution is presented in many statistics textbook, not as an exam-
ple of something practically useful as many textbook examples of probability
distributions, but usually as a pathological example – of a probability distribu-
tion for which standard deviation is infinite. However, in data processing under
uncertainty, this distribution is very practically useful; see, e.g., [6, 11].

Specifically, what is useful is the following property of this distribution:

11

• if we have n independent random variables ∆xi which are Cauchy dis-
tributed with parameters ∆i,

• then their linear combination (1) is also Cauchy distributed with the pa-
rameter described exactly by the formula (4)!

Thus, we can estimate ∆ as follow: several (N) times k = 1, . . . , N :

• we simulate each random variable ∆x
(k)
i distributed according to the

Cauchy distribution with parameter ∆i;

• we simulate the values of xi as x
(k)
i = x̃i −∆x

(k)
i ; and

• we apply the data processing algorithm f to the simulated values, resulting

in y(k)
def
= f

(
x
(k)
1 , . . . , x

(k)
n

)
.

The resulting differences ∆y(k) = y(k)− ỹ are then Cauchy distributed with pa-
rameter ∆. To find this value, we can use Maximum Likelihood method – i.e.,
find the most probable value ∆. For Cauchy distribution, maximizing the corre-
sponding probability is equivalent to solving the following easy-to-numerically-
solve equation with one unknown ∆:

N∑
k=1

1

1 +

(
∆y(k)

)2
∆2

=
N

2
.

Comment. It is important to comment that, in contrast to Monte-Carlo sim-
ulations, when we simulate actual probability distributions, here, we are not
simulating actual distributions. Indeed:

• we know that the measurement errors are located inside the intervals
[−∆i,∆i]; but

• a Cauchy-distributed random variable can take, with positive probability,
any real value – including values outside this interval.

In this case, the probability distributions are not real – they are a computational
trick.

Which method should we use? We have described two methods for dealing
with interval uncertainty:

• a straightforward method that needs n calls to the algorithm f – as many
calls as there are inputs, and

• Cauchy method that needs N ∼ ε−2 calls to f , where ε is the relative
accuracy with which we want to estimate ∆.

Clearly:

• if n > N , we should use the straightforward method, and

• if n > N , i.e., if we have many inputs, then we should use the Cauchy
method.

12

4 Case of imprecise probabilities

Formulation of the problem. In the probabilistic case, we assume that we
know the exact values of the parameters cij characterizing the distribution of
measurement errors for each input xi. Based on this information, we estimate
the parameters c1, . . . , cm of the resulting y-distribution.

In some cases, we only have partial information about the probability dis-
tributions of each input xi; e.g.:

• instead of the exact values of the parameters cij characterizing this distri-
bution,

• we only know bounds on these values, i.e., we only know intervals [cij , cij]
that contain the actual values of these parameters.

Different values cij from the corresponding intervals lead, in general, to different
values cj . We thus need to find the ranges of possible values of these parameters
cj .

How can we find these ranges?

Natural idea. For each combination of values ci1, . . . , cim of the corresponding
parameters, we can use one of the above probabilistic-case algorithms – e.g.,
Monte-Carlo approach or linearization – to find the values c1, . . . , cm of the
parameters describing the resulting y-distribution. Thus, what we have, in
effect, are new algorithms F1, . . . , Fm that:

• given the values x1, . . . , xn of the inputs and the values cij of the param-
eters describing their uncertainty,

• estimate the parameter cj describing the uncertainty of the result y of
data processing:

cj = Fj(x1, . . . , xn, c11, . . . , c1m, . . . , cn1, . . . , cnm).

In our case, we do not know the exact values of the parameters cij , we only
know the intervals [cij , cij] that contain these values. So, we can use one of
the above-described interval-case technique to find, for each j, the range of the
function Fj when cij ∈ [cij , cij]:

[cj , cj] = {F (x1, . . . , xn, . . . , cij , . . .) : cij ∈ [cij , cij]}.

These are exactly the desired ranges for the parameters cj .

5 Case of fuzzy uncertainty

Formulation of the problem: reminder. Sometimes, for the inputs xi,
instead of measurement results, we only have expert estimates, and these expert
estimates are described not in terms of numbers, but in terms of imprecise
(“fuzzy”) words from a natural language.

13

Computers do not understand natural language well, so we need to translate
this knowledge into numbers. How can we do it?

How to translate imprecise knowledge into numbers: a natural idea.
For precise statement like “x1 is positive”, for each value x1, this statement is
either true or false. For example:

• this statement is true for x1 = 0.1, and

• this statement is false for x1 = −0.1.

For imprecise statement like “x1 is small”, for some values x1, the expert
him/herself is not 100% sure. A natural idea is to ask an expert, for all possible
values x1, to describe his/her degree of confidence in this statement on some
scale – e.g., from 0 to 1, so that 0 means no confidence at all, while 1 means
100% confidence. This natural idea – first proposed by Lotfi Zadeh – is one of
the main ideas of the techniques that he called fuzzy logic.

Of course, there are infinitely many possible values of each quantity xi, so
we cannot ask the expert infinitely many question, so what we can do is:

• ask about some values, and then

• perform some interpolation/extrapolation to cover values in between.

As a result, for each imprecise expert statement about xi, we get a function
µi(xi) that assigns, to each possible value of the quantity xi, the degree to
which the expert is confident in this statement. This function is known as a
membership function.

Need for logic. Suppose that we have two expert statements:

• a statement S1(x1) about x1 and

• a statement S2(x2) about x2.

We can extract, from the expert, the degrees of belief µ1(x1) and µ2(x2) in these
statements corresponding to all possible values x1 and x2, but what we really
need is the degree to which a combined statement “S1(x1) and S2(x2)” is true.

Theoretically, we can ask an expert to evaluate the desired degree for all
possible pairs (x1, x2), for all possible triples if we combine three statements, etc.
However, in practice, this is not feasible. Even if we take only 10 possible values
of each variable xi, then, e.g., for five inputs we will need to ask 105 = 100000
questions – this is not feasible.

Since we cannot directly ask for the expert’s degree of confidence in complex
statements like “A and B” (or in similar statements of the type “A or B”), we
need to be able to estimate these degrees based on whatever information we
have: namely, degrees of confidence a and b in statements A and B.

The algorithms computing the corresponding estimates f&(a, b) for the de-
gree of confidence in “A and B” and f∨(a, b) for the degree of confidence in

14

“A or B” are known as “and”-operations and “or”-operations. For historical
reasons, they are also known as t-norm and t-conorm.

The need for operations representing logical operations such as “and” and
“or” is what caused Zadeh to call this approach fuzzy logic.

Which “and”- and “or”-operations should we choose? To select ap-
propriate operations, let us list reasonable requirements. Let us start with the
“and”-operation.

• First, the degree of confidence in a statement “A and B” – which is
stronger than both A and B – cannot be larger than our degrees of confi-
dence in each of the original statements A and B:

f&(a, b) ≤ a and f&(a, b) ≤ b.

• Second, the statement “A and A” means the same as A, so we conclude
that f&(a, a) = a.

• Third, if we increase degree of confidence on one or both statements A
and B, this can only increase our degrees of confidence in the combined
statement “A and B”: if a ≤ a′ and b ≤ b′, then f&(a, b) ≤ f&(a′, b′).

It turns out that these simple and natural requirements uniquely determine the
choice of the “and”-operation. Indeed:

• Suppose that a ≤ b. Then, by the first property, f&(a, b) ≤ a, by the
second property, f&(a, a) = a, and by the third property,

a = f&(a, a) ≤ f&(a, b).

From f&(a, b) ≤ a and a ≤ f&(a, b), we conclude that

f&(a, b) = a.

• Suppose that b ≤ a. Then, by the first property, f&(a, b) ≤ b, by the
second property, f&(b, b) = b, and by the third property,

b = f&(b, b) ≤ f&(a, b).

From f&(a, b) ≤ b and b ≤ f&(a, b), we conclude that

f&(a, b) = b.

Both cases can be covered by a single expression f&(a, b) = min(a, b).
Let us now consider the “or”-operation. Here, we can also formulate three

natural properties.

• First, the degree of confidence in a statement “A or B” – which is weaker
than both A and B – cannot be smaller than our degrees of confidence in
each of the original statements A and B:

a ≤ f∨(a, b) and b ≤ f∨(a, b).

15

• Second, the statement “A or A” means the same as A, so we conclude
that f∨(a, a) = a.

• Third, if we increase degree of confidence on one or both statements A
and B, this can only increase our degrees of confidence in the combined
statement “A or B”: if a ≤ a′ and b ≤ b′, then f∨(a, b) ≤ f∨(a′, b′).

It turns out that these simple and natural requirements uniquely determine the
choice of the “or”-operation. Indeed:

• Suppose that a ≤ b. Then, by the first property, b ≤ f∨(a, b), by the
second property, f∨(b, b) = b, and by the third property,

f∨(a, b) ≤ f∨(b, b) = b.

From b ≤ f∨(a, b) and f∨(a, b) ≤ b, we conclude that

f∨(a, b) = b.

• Suppose that b ≤ a. Then, by the first property, a ≤ f∨(a, b), by the
second property, f∨(a, a) = a, and by the third property,

f∨(a, b) ≤ f∨(a, a) = a.

From a ≤ f∨(a, b) and f∨(a, b) ≤ a, we conclude that

f∨(a, b) = a.

Both cases can be covered by a single expression f∨(a, b) = max(a, b).
Thus, we select f&(a, b) = min(a, b) and f∨(a, b) = max(a, b).

Towards data processing under fuzzy uncertainty. Suppose that we know
the algorithm y = f(x1, . . . , xn) that is used in data processing, and our infor-
mation about each input xi is described by a membership function µi(xi). We
want to describe the degree µ(y) to which different values of y are possible.

A value y is possible if there exist values x1, . . . , xn for which y =
f(x1, . . . , xn) and for which “x1 is possible and x2 is possible, etc.”, i.e., if:

• either the statement in quotes holds for one tuple (x1, . . . , xn) for which
y = f(x1, . . . , xn),

• or this statement holds for another tuple (x1, . . . , xn) for which y =
f(x1, . . . , xn), etc.

For each i, the degree to which each value xi is possible is equal to µi(xi).
Here, “and” is represented by minimum, so the degree to which the statement
in quotes in satisfied is equal to min(µ1(x1), . . . , µn(xn)).

Here, “or” is represented by maximum, so the desired degree is equal to

µ(y) = max{min(µ1(x1), . . . , µn(xn)) : f(x1, . . . , xn) = y}. (5)

16

This formula – first proposed by Zadeh – is known as Zadeh’s extension principle.
How can we use this principle for computations? The idea comes from the

fact that while expert’s conclusions are often imprecise, we need to eventually
make decisions. We can rarely achieve full confidence, so a natural idea is to
select some threshold α and to make a decision if the degree of confidence is

greater than or equal to α. The set of all such values x(α)
def
= {x : µ(x) ≥ α} is

known as the α-cut of the corresponding membership function.
Once we know all α-cuts, we can then uniquely determine the original mem-

bership function µ(x) – namely, for each x, the value µ(x) is the smallest value
α for which x ∈ x(α). Thus, instead of describing the expert’s statement by
a membership function, we can describe it by listing α-cuts corresponding to
different levels α.

Usually, an expert can only provide a degree from 0 to 1 with accuracy 0.1
– e.g., it is difficult to distinguish between degrees of confidence 0.30 and 0.31.
Thus, it is sufficient to only describe α-cuts corresponding to

α = 0, α = 0.1, α = 0.2, . . . , α = 0.9, α = 1.0.

For most natural language words, the degree of confidence first increases
then decreases. For such membership functions, each α-cut is an interval.

It turns out that α-cuts are useful in processing fuzzy inputs. Indeed, when
is µ(y) ≥ α, i.e., when is y ∈ (α)? According to the formula (5), this means
that there exists some values x1, . . . , xn) for which y = f(x1, . . . , xn) and for
which min(µ1(x1), . . . , µn(xn)) ≥ α., The last inequality, in its turn, means
that µi(xi) ≥ α for all i, i.e., that xi ∈ xi(α). Thus, y ∈ y(α) means that
y = f(x1, . . . , xn) for some xi ∈ xi(α). In other words, the α-cut for y is the
range of the function f(x1, . . . , xn) on the α-cuts for xi:

y(α) = {f(x1, . . . , xn) : x1 ∈ x1(α), . . . , xn ∈ xn(α)}. (6)

We already know how to compute this range, so we arrive at the following
algorithm for processing fuzzy uncertainty.

How to process fuzzy uncertainty: algorithm. We know the data pro-
cessing algorithm f(x1, . . . , xn), and we know the membership functions µi(xi)
describing the expert’s knowledge of the inputs.

Then, for each α = 0, 0.1, . . . , 0.9, 1.0:

• First, for each i, we compute the corresponding α-cuts. These α-cuts will
be intervals.

• Then, we use one of the above-described interval methods to compute the
range (6).

The resulting α-cuts y(α) describe the resulting information about the desired
quantity y.

17

6 How to take uncertainty into account in ma-
chine learning – especially in deep learning

Formulation of the problem. The above techniques assume that we know
the equations that describe the system’s behavior and the system’s dynamics –
and thus, we have an algorithm f(x1, . . . , xn) that estmates the desired quantity
y based on the known values x1, . . . , xn.

In many practical situations, however, we do not have this knowledge, we
must determine the system’s dynamics based on its observed behavior. This is
the subject of machine learning; see, e.g., [1, 2]. In this case:

• in several cases k = 1, . . . ,K, we know the values x
(k)
1 , . . . , x

(k)
n , and y(k);

• based on these values, the machine learning algorithm find an algorithm
f(x1, . . . , xn) for which

y(k) ≈ f
(
x
(k)
1 , . . . , x(k)n

)
for all k.

At present, one of the main tools for machine learning is deep learning; see,
e.g., [2] and references therein.

A natural question is: how do we take into account uncertainty with which
we know the inputs?

Straightforward approach and its limitations. Once we have an algorithm
f(x1, . . . , xn) – whether it is explicitly given or presented as a neural network –
we can apply one of the above techniques to take care of the input’s uncertainty.

The limitation of this straightforward approach is that it requires to run
the neural network several times – so the time needed to take uncertainty into
account is much longer than the time needed to compute the estimate itself.

How can we speed up this process?

Natural idea. Once we have trained the neural network – or any other appro-
priate tool – to estimate y, i.e., once we come up wth an appropriate algorithm
f(x1, . . . , xn), we can then use one of the above algorithms, on several cases,
to estimate how uncertainty in the inputs lead to uncertainty in the result. In

all these cases, for different values x
(k)
i of the input and for different parame-

ters c
(k)
1 , . . . , c

(k)
n of the corresponding uncertainty (standard deviations, upper

bounds, etc.), we get not only the estimate y(k) for the quantity y, we also get
an estimate c(k) for the resulting uncertainty in y.

Then, a natural idea is to train a new neural network c =
F (x1, . . . , xn, c1, . . . , cn) so that:

• given the inputs x1, . . . , xn and the information c1, . . . , cn about the un-
certainty of these inputs,

• this neural network will return the corresponding parameters c.

18

In other words, we want to find a function F for which

c(k) = F
(
x
(k)
1 , . . . , x(k)n , c

(k)
1 , . . . , c(k)n

)
for all k.

Then, to find the corresponding uncertainty, you will need to run a neural
network – namely, the neural network corresponding to F – only once.

Comment. Most of the above techniques involve applying the algorithm f not

only to the original results x
(k)
i but also to perturbed values. This may help not

only to estimate uncertainty: it will also help to avoid a big problem of deep
learning, that often, a minor change in the input drastically changes the result.
For example, changing a small number of pixels in the image of a cat can lead
the network to conclude that it is a dog; see, e.g., [2].

Good news is that such confusing perturbations are rare, and often, this
problem disappears if we add additional noise. So, if we train the neural network
not only on the original values xi, but also on perturbed values, this may not
only help to estimate the resulting uncertainty, it will also help to avoid wrong
results.

Acknowledgments

This work was supported in part by the National Science Foundation grants
1623190 (A Model of Change for Preparing a New Generation for Professional
Practice in Computer Science), and HRD-1834620 and HRD-2034030 (CAHSI
Includes).

The authors is greatly thankful to the editors for their encouragement.

References

[1] C. M. Bishop, Pattern Recognition and Machine Learning, Springer, New
York, 2006.

[2] I. Goodfellow, Y. Bengio, and A. Courville, Deep Leaning, MIT Press,
Cambridge, Massachusetts, 2016.

[3] L. Jaulin, M. Kiefer, O. Didrit, and E. Walter, Applied Interval Analysis,
with Examples in Parameter and State Estimation, Robust Control, and
Robotics, Springer, London, 2001.

[4] E. T. Jaynes and G. L. Bretthorst, Probability Theory: The Logic of Sci-
ence, Cambridge University Press, Cambridge, UK, 2003.

[5] G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall, Upper
Saddle River, New Jersey, 1995.

19

[6] V. Kreinovich and S. Ferson, “A New Cauchy-Based Black-Box Technique
for Uncertainty in Risk Analysis”, Reliability Engineering and Systems
Safety, 2004, Vol. 85, No. 1–3, pp. 267–279.

[7] V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational Complex-
ity and Feasibility of Data Processing and Interval Computations, Kluwer,
Dordrecht, 1998.

[8] G. Mayer, Interval Analysis and Automatic Result Verification, de Gruyter,
Berlin, 2017.

[9] J. M. Mendel, Uncertain Rule-Based Fuzzy Systems: Introduction and New
Directions, Springer, Cham, Switzerland, 2017.

[10] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval
Analysis, SIAM, Philadelphia, 2009.

[11] H. T. Nguyen, V. Kreinovich, B. Wu, and G. Xiang, Computing Statistics
under Interval and Fuzzy Uncertainty, Springer Verlag, Berlin, Heidelberg,
2012.

[12] H. T. Nguyen, C. L. Walker, and E. A. Walker, A First Course in Fuzzy
Logic, Chapman and Hall/CRC, Boca Raton, Florida, 2019.

[13] S. G. Rabinovich, Measurement Errors and Uncertainties: Theory and
Practice, Springer, New York, 2005.

[14] D. J. Sheskin, Handbook of Parametric and Non-Parametric Statistical Pro-
cedures, Chapman & Hall/CRC, London, UK, 2011.

[15] L. A. Zadeh, “Fuzzy sets”, Information and Control, 1965, Vol. 8, pp. 338–
353.

20

	Data Analytics Beyond Traditional Probabilistic Approach to Uncertainty
	Recommended Citation

	tmp.1614806767.pdf.iIGKW

