
University of Texas at El Paso University of Texas at El Paso 

ScholarWorks@UTEP ScholarWorks@UTEP 

Departmental Technical Reports (CS) Computer Science 

10-2020 

Coding Overhead of Mobile Apps Coding Overhead of Mobile Apps 

Yoonsik Cheon 
The University of Texas at El Paso, ycheon@utep.edu 

Follow this and additional works at: https://scholarworks.utep.edu/cs_techrep 

 Part of the Computer Sciences Commons 

Comments: 

Technical Report: UTEP-CS-20-106 

Recommended Citation Recommended Citation 
Cheon, Yoonsik, "Coding Overhead of Mobile Apps" (2020). Departmental Technical Reports (CS). 1531. 
https://scholarworks.utep.edu/cs_techrep/1531 

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UTEP. It has 
been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of 
ScholarWorks@UTEP. For more information, please contact lweber@utep.edu. 

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/cs_techrep
https://scholarworks.utep.edu/computer
https://scholarworks.utep.edu/cs_techrep?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1531&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1531&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/cs_techrep/1531?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1531&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu


 

 

 

 

 

 

 

 

 

 

Coding Overhead of Mobile Apps 
 

 

Yoonsik Cheon 

 

TR #20-106 

October 2020 

 

 

 

 

 

 

 

 

 

 

 

 

Keywords: code complexity; mobile app, Android, Java 

 

2012 ACM CCS: • Software and its engineering ~ Software creation and its management • Software and its 

engineering ~ Software notations and tools • Human-centered computing ~ Mobile computing 

 

 

 

 

 

 

 

 

 

Submitted for publication. 

 

 

 

 

Department of Computer Science 

The University of Texas at El Paso 

500 West University Avenue 

El Paso, Texas 79968-0518, U.S.A 

 



1 

 

Coding Overhead of Mobile Apps 

Yoonsik Cheon 

Department of Computer Science 

The University of Texas at El Paso 

El Paso, Texas, U.S.A. 

ycheon@utep.edu 

 

 

Abstract — A mobile app runs on small devices such as 

smartphones and tablets. Perhaps, because of this, there is a 

common misconception that writing a mobile app is simpler than 

a desktop application. In this paper, we show that this is indeed a 

misconception, and it’s the other way around. We perform a small 

experiment to measure the source code sizes of a desktop 

application and an equivalent mobile app written in the same 

language. We found that the mobile version is 19% bigger than the 

desktop version in terms of the source lines of code, and the mobile 

code is a lot more involved and complicated with code tangling and 

scattering. This coding overhead of the mobile version is mostly 

due to the additional requirements and constraints specific to 

mobile platforms, such as diversity and mobility. 

Keywords—code complexity, mobile app, Android, Java 

I. INTRODUCTION 

Mobile platforms are one of the most popular application 
platforms of today alongside the Web platform. It is said that 
people are spending more time on mobile devices than on 
desktop or laptop computers, and the number of mobile app 
downloads has been steadily increasing. There are nearly six 
million mobile apps available today through app stores [5]. 
Mobile app development is growing fast, and now represents a 
significant part of the software industry. And thus, many are 
thinking about learning how to code mobile apps, and some take 
the plunge. 

There is, however, a common misconception that coding a 

mobile app is simpler than a desktop application. Perhaps, this 

is originated from the fact that a mobile app runs on small 

devices such as smartphones and tablets. It may also be caused 

by the fact that mobile apps are smaller than traditional 

applications with the average size of 5.6K source lines of code 

(SLOC)  [4], and the development of mobile apps tend to be driven 

by a single developer or a small team [6]. 

In this paper, we show that it is indeed a misconception by 
studying the additional code besides the core business logic that 
has to be written for mobile apps.  For this, we perform a small 
experiment in which we write two versions of an application in 
the same language, one for a desktop platform and the other for 
a mobile platform. We then measure the source code sizes of the 
two versions as well as studying code that appears only in the 
mobile version. Our finding is that the mobile version is 19% 
bigger than the desktop version in SLOC. In addition to 
performing the core business logic of the application like the 
desktop version – in fact, the business logic code is reused, or 
shared, between the two versions – the mobile app code has to 
meet the mobile platform-specific requirements and constraints. 
For example, 17% of the mobile app code was written to handle 

screen orientation changes. When a mobile device is rotated and 
the screen changes orientation, say from portrait to landscape, 
the app needs to present the same contents as before but in the 
landscape layout.  

The main contribution of our work is a quantitative 

measurement of the amount of code that has to be written to 

address mobile platform-specific requirements and constraints. 

Mobile apps have different characteristics from traditional 

desktop applications [4], and developing mobile apps presents 

different challenges compared with desktop apps [3]. Platform 

differences are the primary source of challenges in developing 

applications for multiple platforms. It was shown, for example, the 

application programming interface (API) differences are the major 

factor that determines the amount of code reuse possible between Java 

and Android Java [1]. We, however, found no published work 

measuring the coding overhead of mobile apps compared with 

equivalent desktop applications.  

The rest of this paper is structured as follows. In Section II 
we describe our experiment approach including the application 
to be created – an app to track fluctuating prices of products, 
scraped from Web pages. In the next two sections, we design 
and code a Java desktop version and an Android native app 
written in Java, respectively. In Section V, we compare the two 
versions by measuring their code sizes and analyzing the 
additional code written for the Android version. In Section VI, 
we conclude our paper with a concluding remark. 

II. OUR APPROACH 

Our approach to studying the coding overhead of mobile 
applications is a small experiment in which we create two 
versions of an application, one for a desktop platform and the 
other for a mobile platform. We then analyze and compare the 
source code of the two versions. In this paper, we use the term 
platform in a very narrow sense to mean a software development 
kit (SDK) including its application programming interfaces 
(API). Besides the platform, other factors may affect the source 
code size of an application, and thus we need to control and 
minimize the influence by factors other than the platform. The 
influence may be internal in the sense it is due to the application 
itself or external to the application.  

An application itself can of course influence its source code 
complexity. For example, even if two versions of an application 
provide the same functionality, different user interfaces may 
result in different code complexities. The programming 
languages also affect the source code size of an application, as 
some programming languages are more expressive than others 
in the sense that they provide more succinct notations and are 



2 

 

less verbose. In our experiment, therefore, we code both 
versions of the application in the same programming language. 
We also implement similar user interfaces for the two versions 
modulo the graphical user interface frameworks of the 
underlying platforms. However, to have a realistic experiment, 
the user interfaces will be designed by following the guidelines, 
styles, and conventions of the platforms even if there are 
differences between the two versions, e.g., the use of the swipe 
gesture in the mobile version.  

We develop an application named Price Watcher that tracks 
the prices of products, or items, extracted from their Web pages. 

Actually, it was written for another study [1] and will be adapted 
a bit in this paper. The application helps a user to figure out the 
best time to buy items by watching over fluctuating prices. Since 
the prices are scraped from Web pages, the watch list may 
consist of items from different online stores or websites. We 
create a Java desktop application as well as a native Android 
mobile app written in Java. By coding both versions in Java, we 
eliminate the language difference concern mentioned above and 
can reuse significant code between the two versions despite the 
platform differences. 

 

 

Figure 1. Screenshots of Price Watcher (Java and Android)  

 
Figure 1 shows the screenshots of both versions of the 

application. By having similar user interfaces, we minimize the 
influence of the user interface designs on the source code 
complexity. We display multiple items in a scrollable list, and 
each item is manipulated with a popup menu of which a couple 
of frequently used menu items are shown as image icons for 
quick access. The drop-down menus at the top of the screen 
provide display-related operations applicable to all items, such 
as searching, filtering, grouping, and sorting the items. In the 
Java version, the main menu bar and toolbar provide operations 
such as adding new items and checking the prices of existing 
items. In the Android version, these operations are provided as 
the app bar, one of the important user interface design elements 
of an Android app. 

III. DESKTOP APPLICATION 

The desktop version is a Java application written using the 
Java AWT/Swing graphical user interface frameworks. To make 
the application realistic, we use an SQLite database to store the 

items being watched. SQLite is a serverless relational database 
system, meaning that it is embedded into the application. 

Figure 2 shows the design of the application – main classes 
and their relationships. We use the model-view-controller 
(MVC) design to separate the business logic from the user 
interface. This design not only modularizes our application but 
also allows us to reuse the business logic classes in the Android 
version (see Section IV).  The top half of the diagram shows the 
user interface classes. These are custom widget classes such as 
ItemView, ItemFilter, and dialogs as well as view-specific 
model classes such as ItemListModel. We display a collection 
of items with a list widget (JList), but each item is displayed by 
the ItemView class. The subclass ItemCellRender adapts the 
ItemView class to work with the list widget. The ItemListModel 
class is an adaptor to provide the items being watched to the list 
widget. 

 

 

Figure 2. Design of the Java version 

 

The bottom half of the diagram shows the business logic, or 
model, classes including data, persistence, and network classes. 
An item being watched is represented by the Item class, and the 
ItemManager class manages a collection of items. A special 
subclass named SqliteItemManager persists items by storing 
them in an SQLite database. For this, the SqliteItem extends an 
item state to store SQLite-specific information such as the 
primary key. An interesting design decision is the introduction 
of an interface named SqliteHelperable. The SqliteItemManager 
class accesses – stores, reads, and updates – items in the database 
through this interface. There are some API differences between 
Java and Android implementations of SQLite, and the interface 
hides these differences to the manager class so that it can be 
reused in the Android version of the application as well (see 
Section 0). The SqliteHelper class implements the interface by 
using the Java implementation of SQLite. For example, it 
connects to the database with a Java Database Connectivity 
(JDBC) driver. The PriceFinder and WebStore classes are 
responsible for networking and Web scraping. Actual work is 
done by the WebStrore class, which is an enum type and defines 
all the websites supported by the application. For each website, 
it provides information such as store name, URL, and icon as 
well as an algorithm to parse and extract an item's price from a 

Item

ItemListModel

ItemManager

MainUI

*

SqliteItemManager SqliteItem

SqliteHelper

PriceFinder

AbstractDialog

AddDialog EditDialog

SearchDialog

ItemCellRenderer

WebStore

ItemFilter
ItemView

«interface»

SqliteHelperable



3 

 

Web document. Since each website displays the price of an item 
differently, different Web scraping algorithms are defined for 
different websites. 

The implementation of the application consists of 22 Java 
classes with 3157 source lines of code (SLOC) including 
program comments (see Table 1). About 68% of the source code 
is concerned with the user interface of the application. This is 
not surprising, as the business logic of the application is 
somewhat straightforward, and the user interface is coded 
programmatically in Java. The business logic consists of three 
parts: (a) managing the list of items, (b) storing them in a 
database, and (c) finding the current prices of the items by 
scraping their Web pages. Each of these business logic parts 
contributes about 10~11% of the total lines of source code. 

Table 1. Code size of the Java version 

Classes 
No. of Classes 

Percent (%) 

No. of Lines 

Percent (%) 

UI 14 63.64 2145 67.94 

Data 2 9.09 348 11.02 

Storage 4 18.18 345 10.93 

Network 2 9.09 319 10.10 

Total 22 100 3157 99.99 

 

 

Figure 3. Design of the Android version 

IV. ANDROID APP 

The class diagram in Figure 3 shows the design of the 
Android version of the application. It also uses MVC, the most 
popular architectural design for Android apps [2] [7]. The 
structure of model classes shown in the bottom half of the 
diagram is identical to that of the Java version. The business 
logic of the application – managing items, scaping their prices 
from Web documents, and persisting items to a database – is 
identical regardless of the platforms. The detailed design and 
code are also reused from the Java implementation (see Section 
III). In particular, the classes shown in shaded boxes are 
identical to those of the Java version except for minor 
differences in some classes. The Webstore class, for example, 
represents a Web store icon differently in the two versions, i.e., 
as an image icon in Java and as an app resource identifier on 
Android. It is possible to make the code more reusable by 
factoring out common code into a base enum type and 
introducing platform-specific extended enum types [1]. The 
SQliteHelper class is, of course, rewritten by using the SQLite 
API included in the Android SDK. The AppModel class is a 

new model class introduced specifically for the Android 
version. It represents the app state that has to be retained even 
if the app restarts because of configuration changes such as 
screen orientation changes (see below for more on this).  

The interesting part is the design of user interface-related 
classes shown in the top half of the diagram as it is different 
from that of the Java version for several reasons. In Android, the 
user interface layout – composition of views and widgets – are 
declared in XML files called layout resources, thus the user 
interface classes shown in the diagram are control code or view-
specific model classes. That is, unlike the Java version, there 
are no widget classes. Remember also that an activity is an 
Android application component that represents a single screen 
with a user interface. The primary roles of an activity class are 
to find views and widgets, set their properties, and register event 
handlers for them. The MainActivity class, for example, is the 
activity responsible for the main screen that displays items in a 
list view, and the FilterAdapter provides the list view with the 
items to be displayed based on the user’s selection by adapting 
the ItemManager from the model part. There are other activities 
and view-specific model classes suppressed in the diagram. 

The user interface design shows the use of Android-specific 
concepts and framework classes, not present in the Java version: 
view models, fragments, and tasks. You can see classes named 
as MainViewModel and DialogViewModdel that work as 
middlemen, or data binders, between the view and the model. 
These so-called view model classes of the Android store and 
manage user interface-related data in an activity lifecycle 
conscious way [2] [8]. An application component such as an 
activity may be paused, stopped, destroyed, and recreated by 
the system. For example, when the screen is rotated, the running 
activity destroyed. And a new instance is created with a 
different configuration, e.g., a landscape layout. Android 
provides several ways to let application data survive 
configuration changes. One simple and stable way is to use a 
view model for persisting the user interface. A view model 
object is automatically retained during configuration changes, 
and the data it holds is immediately available to the new activity 
created due to the configuration change. The newly created 
activity becomes the new owner of the view model. The 
MainViewModel class is a view model for the main screen, and 
its subclass DialogViewModel class is for various dialogs. 

Besides view models, the user interface design uses another 
Android-specific concept called fragments. A fragment is a 
modular section of an activity with its own lifecycle. It is a piece 
of a user interface or behavior that can be placed within an 
activity. For example, an activity can consist of multiple 
fragments to provide a multi-pane user interface. In the design, 
fragments are used for two different purposes. They are used to 
code several dialogs as shown on the top right side of the class 
diagram. More interestingly, fragments are used to preserve 
network operations during configuration changes such as screen 
orientation. The Android system can retain an instance of a 
fragment when an activity is recreated due to a configuration 
change. A fragment, therefore, can be used to retain active 
objects such as threads, asynchronous tasks, and network tasks 
across activity instances. In the design, a network operation such 
as scraping Web documents is wrapped in and managed by a 
retained fragment, called a worker fragment. A worker fragment 

Item

MainViewModel

ItemManager

MainActivity

*

PriceFinder

AbstractDialogFragment

AddDialogFragment

EditDialogFragment

DialogViewModel

AppModel

WorkerFragmentWorkerTask

PriceWorkerFragmentPriceTask

FilterAdapter

SqliteItemManager SqliteItem

SqliteHelper

«interface»

SqliteHelperable

WebStore



4 

 

plays a similar role as a view model but for computation. It 
preserves a computation or operation during a configuration 
change. The Android system prohibits a network operation on 
the main, or user interface, thread to prevent an unresponsive 
user interface. All network operations, therefore, have to be 
performed asynchronously on a thread other than the main 
thread. The class WorkerTask was introduced for this purpose, 
i.e., to perform a network operation asynchronously, and is used 
by the WorkerFragment class. 

Table 2. Code size of the Android version shows the size 
complexity of the Android version of the application in terms of 
classes and source lines of code (SLOC). The Android 
implementation has 29 classes and 3747 SLOC.  

Table 2. Code size of the Android version 

Classes 
No. of Classes 

Percent (%) 

No. of Lines 

Percent (%) 

UI 19 65.52 2567 68.51 

Data 3 10.34 386 10.30 

Storage 4 13.79 248 6.62 

Network 3 10.34 546 14.57 

Total 29 100 3747 100 

V. EVALUATION 

As shown in the previous two sections, the Java version 
consists of 22 classes with 3157 SLOC and the Android version 
29 classes with 3747 SLOC. In terms of SLOC, the Android 
version is 19% bigger than the Java version. In both versions, 
most code is concerned with user interfaces (UI): 68% for Java 
and 69% for Android. The application is UI-intensive in that you 
write more UI-related code than the core business logic. We 
wrote 20% more UI-related code for Android (2567 SLOC) than 
Java (2145 SLOC). This is very surprising because the Android 
user interfaces are declared in XML and provided as layout 
resources whereas the Java user interfaces are coded in Java. 
There are nine user interface resource files written in XML, 
including layouts for activities and dialogs, menus for app bars 
and popups, and settings. There are no view or widget classes 
coded in Java. Our initial expectation was that the UI-as-code 
approach of Java should require more coding than the 
declarative user interface approach, or UI-as-XML, of Android. 
In the Java version, all UI-related classes except for the 
ItemListModel class are indeed user-defined widget classes, 
representing different parts of the UI including dialogs and 
menus. They do what the Android user interface classes plus the 
XML layout files do. 

Why does the Android version require more UI-related code 
than Java even with its user interface layouts defined in XML? 
To find this out, we examined our Android source code. We first 
grouped our classes by their roles and measured their code sizes 
as shown in Table 3. The first two groups – classes responsible 
for composing and showing the main screen and different 
dialogs – account for 62% of the UI code. Even with UI layouts 
such as screens, dialogs, and menus defined in XML, a non-
trivial amount of code was written to compose and customize 
them at runtime. These classes are also responsible for handling 
screen orientation changes (see below for a discussion on this). 
Two classes adapt business logic classes to supply data, i.e., 
items being watched, to the main screen, and they account for 
16% of the UI code. The group labeled “config. changes” is 

interesting because its classes are Android-specific and don’t 
appear in the Java version. This group includes classes like view 
models and worker fragments that are responsible for handling 
configuration changes such as screen orientation, and it accounts 
for 16% of the UI-related code. 

Table 3. Size of UI-related code 

Group 
No. of Classes 

Percent (%) 

No. of Lines 

Percent (%) 

Main screen 3 16.67 959 37.36 

Dialogs 5 27.78 625 24.35 

Model adapters 2 11.11 399 15.54 

Config. changes 6 33.33 405 15.78 

Miscellaneous 2 11.11 179 6.97 

Total 18 100.00 2567 100.00 

 

 

Figure 4. Screen orientation change 

 
When a configuration change such as screen orientation 

occurs during the runtime, Android restarts an activity by 
destroying the current instance and creating a new one. This 
restart behavior is an Android way of adapting to a new 
configuration by automatically reloading the app with 
alternative resources that match the new configuration. This 
means that the app code is responsible for preserving the app 
data as well as computation during a configuration change. For 
example, if the user rotates the screen while adding a new item 
to the watch list (see Figure 4), the Android system will pause, 
stop, and destroy the running activity and then restart it by 
creating a new instance possibly with a landscape layout. The 
app code is responsible for showing the same contents as before 
with the new user interface. The app data has to be saved and 
restored, and the computation, e.g., the network operation to find 
the initial price of the item being added, has to be preserved. As 
shown in the previous section, we used view models and worker 
fragments for this. We closely examined the classes in the first 
two groups (Main screen and dialogs) and 14% of their code 
(221 SLOC) is for addressing configuration changes. We, 
therefore, have a total of 626 SLOC for addressing configuration 
changes including six standalone classes with 405 SLOC and 
221 SLOC embedded in other classes. And the device 
configuration changes such as screen orientation account for 
24% (626 / 2567 * 100) of the UI-related code and 17% (626 / 
3747) of the overall code. 

Besides the roles of code shown in Table 3 above, there is 
code that is not written as a separate class but scattered over the 
UI-related classes. The code that we are interested in is the one 
that is Android platform-specific and thus doesn’t appear in the 



5 

 

Java version. This is code other than the so-called control code 
that handles user interactions. 

• Android provides platform-specific programming and 
framework concepts such as activities, fragments, and 
intents. Coding these can be somewhat involved 
because they are not provided as built-in language 
constructs or features. Unlike Java, for example, 
navigating between screens (activities) isn’t as simple 
as calling a method, as an activity may run in a different 
process and virtual machine. Parameters, if any, have to 
be manually packed and unpacked with no parameter 
checking done by the framework. Return values require 
the use of a callback mechanism – i.e., overriding a 
specific framework method. The resulting code is not 
only less reliable but also requires more work. 

• A mobile user interface has to be responsive as an 
unresponsive user interface makes the device unusable. 
Android prohibits network operations on the main (user 
interface) thread to avoid creating an unresponsive user 
interface. All network operations have to be performed 
asynchronously on a thread other than the main thread. 
As described in Section IV, all network operations in 
our code are performed by special classes called worker 
tasks. Performing network operations asynchronous is 
of course a good practice to improve the responsiveness 
of an app, however, it requires additional code for 
creating and managing threads. And it also introduces 
complications due to multithread programming such as 
mixing asynchronous and synchronous code. 

• Because of the mobility of a device, a mobile app needs 
to check the current situation constantly and adapt to 
changes, e.g., availability and strength of WiFi and GPS 
signals. Since our app uses Internet resources, we check 
the availability of a network connection but just once 
when the app is first launched. In practice, however, you 
may need to monitor the network connection while the 
app is running.  If a connection is not available, your app 
may try to establish a new connection automatically or 
show the built-in connection settings app. Establishing 
a connection automatically would be ideal but might be 
involved because of reasons such as sign-in 
requirements or mobile data costs. All these, of course, 
mean additional coding in addition to the business logic. 

Security and privacy can be another type of concern that is 
common and has to be addressed in the Android code. Android 
uses permission-based access control to protect its resources. If 
an app requires a group of permission called dangerous 
permissions – permissions that could affect the user's privacy or 
the device's normal operation, e.g., contacts and SMS – the user 
must explicitly grant these permissions at runtime. This of 
course requires additional code even if it may be boiler-plate 
code. There seem to be many such secondary concerns due to 
the nature of mobile platforms, e.g., diversity and mobility. It 
would be interesting future work to identify and classify them 
and study their impacts on source code complexity. 

VI. CONCLUSION 

Mobile apps run on small devices such as smartphones and 

tablets, and they are smaller than traditional applications. These 

and other aspects of mobile apps may have given a wrong 

impression to beginning programmers as well as the general 

public that writing mobile apps are simpler than traditional 

applications. We showed through a small experiment that 

Android mobile apps written in Java require more source lines 

of code (SLOC) than equivalent Java desktop applications. The 

sample application coded in our experiment consists of 22 

classes with 3157 SLOC for the Java version and 29 classes 

with 3747 SLOC for the Android version. The Android version 

is 19% bigger than the Java version in source code size. This 

size difference was observed mainly in the user interface (UI)-

related code as the business logic of the application is the same 

regardless of the platforms. In fact, the business logic code was 

reused, or shared, between the two versions. We wrote 20% 

more UI-related code for Android (2567 SLOC) than Java 

(2145 SLOC). This is quite surprising because the Android user 

interfaces are declared in XML whereas the Java user interfaces 

are coded in Java. Android’s UI-as-XML approach requires 

more code than the UI-as-code approach of Java. The coding 

overhead of Android, however, is mostly due to the 

requirements and constraints specific to mobile platforms, e.g., 

diversity, mobility, responsiveness, security, and privacy. For 

example, the device configuration changes such as screen 

orientation account for 24% of the UI-related code and 17% of 

the overall code. We also found that the Android code is a lot 

more involved and complicated because of code tangling and 

scattering. The core user interface logic – displaying data – is 

mixed with additional code for platform-specific requirements, 

spread over multiple program modules. 

REFERENCES 

[1] Y. Cheon, C. Chavez and U. Castro, Code reuse between Java and 
Android applications, Proceedings of the 14th International Conference on 
Software Technologies, Prague, Czech, July 26-28, 2019, pages 246-253. 

[2] A. Daoudi, et al., An exploratory study of MVC-based architectural 
pattersn in Android apps, ACM/SIGAPP Symposium on Applied 

Computing, April 2020, pp. 1711-1720. 

[3] U. A. Mannan, et al., Understanding code smells in Android applications, 
IEEE/ACM International Conference on Mobile Software Engineering 

and Systems (MOBILESoft), Austin, TX, 2016, pp. 225-236. 

[4] P. Minelli and M. Lanza, Software analytics for mobile applications –
insights & lessons learned, European Conference on Software 

Maintenance and Reengineering, Genova, Itally, 2013, pp. 144–153. 

[5] Number of apps available in leading app stores as of 1st quarter 2020, 
accessed 24, 2020, https://www.statista.com/statistics/276623/number-
of-apps-available-in-leading-app-stores/. 

[6] M. D. Syer, et al, Revisiting prior empirical findings for mobile apps: An 
empirical case study on the 15 most popular open-source Android apps, 
Conference of the Center for Advanced Studies on Collaborative 

Research, Riverton, NJ, 2013, pp. 283–297. 

[7] R. Verdecchia, I. Malavolta and P. Lago, Guidelines for architecting 
Android apps: A mixed-method empirical study, IEEE International 

Conference on Software Architecture, Hamburg, Germany, 2019, pp. 
141-150.  

[8] ViewModel Overview, accessed 24 August 2020, 
https://developer.android.com/topic/libraries/architecture/viewmodel, 
pp. 1-8.

 


	Coding Overhead of Mobile Apps
	Recommended Citation

	tmp.1614806471.pdf.R2psF

