
University of Texas at El Paso University of Texas at El Paso

ScholarWorks@UTEP ScholarWorks@UTEP

Departmental Technical Reports (CS) Computer Science

10-2020

White- and Black-Box Computing and Measurements under White- and Black-Box Computing and Measurements under

Limited Resources: Cloud, High Performance, and Quantum Limited Resources: Cloud, High Performance, and Quantum

Computing, and Two Case Studies -- Robotic Boat and Computing, and Two Case Studies -- Robotic Boat and

Hierarchical Covid Testing Hierarchical Covid Testing

Vladik Kreinovich
The University of Texas at El Paso, vladik@utep.edu

Martine Ceberio
The University of Texas at El Paso, mceberio@utep.edu

Olga Kosheleva
The University of Texas at El Paso, olgak@utep.edu

Follow this and additional works at: https://scholarworks.utep.edu/cs_techrep

 Part of the Computer Sciences Commons

Comments:

Technical Report: UTEP-CS-20-105

To appear in Proceedings of the 2nd Information-Communication Technologies & Embedded

Systems Workshop ICT&ES-2020, Mykolaiv, Ukraine, November 12, 2020

Recommended Citation Recommended Citation
Kreinovich, Vladik; Ceberio, Martine; and Kosheleva, Olga, "White- and Black-Box Computing and
Measurements under Limited Resources: Cloud, High Performance, and Quantum Computing, and Two
Case Studies -- Robotic Boat and Hierarchical Covid Testing" (2020). Departmental Technical Reports
(CS). 1501.
https://scholarworks.utep.edu/cs_techrep/1501

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UTEP. It has
been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of
ScholarWorks@UTEP. For more information, please contact lweber@utep.edu.

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/cs_techrep
https://scholarworks.utep.edu/computer
https://scholarworks.utep.edu/cs_techrep?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1501&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1501&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/cs_techrep/1501?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1501&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

White- and Black-Box Computing and

Measurements under Limited Resources: Cloud,

High Performance, and Quantum Computing,

and Two Case Studies – Robotic Boat and

Hierarchical Covid Testing

Vladik Kreinovich, Martine Ceberio, and Olga Kosheleva
University of Texas at El Paso

500 W. University
El Paso, TX 79968, USA

vladik@utep.edu, mceberio@utep.edu, olgak@utep.edu

Abstract

In many practical problems, it is important to take into account that
our computational and measuring resources are limited. In this paper,
we overview main resource limitations for different types of computers,
and we provide two case studies explaining how to best take this resource
limitation into account.

1 Formulation of the Problem

What are the goals of science and engineering. We want to know what
will happen in the future, and we want to decide what to do to make this future
better. In a nutshell:

• predicting the future is what science is about, and

• deciding what to do is more the area of engineering.

Need for measurements and computations. To predict the world’s future
and to decide how to improve this future, we need to understand how the world
works. Some of the situations we can simply observe, but in most cases, we
need to measure the values of different quantities.

Based on the measurement results, we deduce the algorithms describing dy-
namics of the world’s processes – and formulate selection of the best action
and/or device as an appropriate optimization problem. To use prediction algo-
rithms and to solve the corresponding optimization problem, we often need to

1

perform a large number of computations. For example, to reasonably accurately
predict tomorrow’s weather, we need to use high-performance computers.

Comment. Some problems require so many computational steps that we cannot
solve them even on the fastest computers. For example, to predict in which
direction a tornado will go, even the existing high-performance computers are
not sufficient:

• to predict where the tornado will do in the next 15 minutes, we need to
spend several hours on a high-performance computer;

• by that time, the tornado has already moved and caused damage.

Our resources are limited. In principle, for the same computational problem,
we may have different algorithms. Which algorithm should we select?

Traditional approach of theoretical computer science uses asymptotic anal-
ysis to compare different algorithms. For example, we analyze how the compu-
tation time grows with the size n of the input, and we select an algorithm that
leads to the shortest possible time for large n. This analysis implicitly assumes
that we can have an unlimited amount of resources:

• we can have inputs of arbitrary large size n,

• we can have an arbitrary large memory to store this data and to store all
needed intermediate results,

• we can perform an arbitrary large number of computations, etc.

In practice, our resources are limited. It is therefore important to consider
how this limitation affect computations and measurements.

What we do in this paper. In this paper:

• we provide a brief overview of the corresponding resource limitations, and

• we also present two case studies explaining, in some detail, how to take
these resource limitations into account.

Comment. In most cases, we focus on our own related results – although, of
course, in each of these problems, there are many other results and techniques.
The reason for this selection is that the results that we cite are usually mathe-
matically reasonably simple – this is why we selected them: for our own results,
we know how we can simplify these results into easy-to-follow not-too-complex
ones.

We believe that overall, these results provide a good introduction to the
great variety of related problems.

White-box and black-box computing. In our analysis, we will distinguish
between:

• traditional (white-box) computing and

2

• practically important black-box computing.

White-box computing corresponds to the usual analysis of theoretical computer
science, when we know, step-by-step, what our algorithms are doing. This
corresponds to:

• situations when we write our own code “from scratch”, and

• situations when we only use open-source software.

In practice, however, we often use proprietary code, i.e., a code that its
producer does not explain. We can use it, but we are not allowed to see the
algorithm – we only see the results. Similarly, in defense applications, we may
need to use classified code – e.g., the code used to control the corresponding
devices.

2 White-Box Computing: Three Types of Situ-
ations and Related Resource Limitations

Three types of situations. In our analysis, we will distinguish between three
different computational situations.

• One such situation is regular-scale computing, when we perform computa-
tions on a usual computer, be it a single laptop of an affordable computer
cluster.

• Regular-size computations work well in many cases, but, as we have men-
tioned earlier, there are many practical situations where regular-scale com-
puting is not sufficient, where we need large-scale computing – what is
usually called high-performance computing.

• For some situations, the opposite is true: we do not need even the full
computational power of a regular laptop, it is sufficient to use limited
computational power of an easier-to-carry smaller device such as a cell
phone or a smart watch. It is natural to call such situations small-scale
computing.

Let us describe what are the typical resource limitations of these three types of
situations – and what can we do to best takes these resource limitations into
account.

Resource limitations of small-scale computing: energy. For small-scale
computing – such as computing on cell phones – by definition, computational
ability is not a problem. The main need for such small-scale devices comes from
the fact that regular computers are not very portable: it is easier to carry a cell
phone than a computer.

This portability is a problem: to perform computations, we need energy. For
a more or less stationary device like a regular computer, this is not a problem: we

3

just plug in the computer, and get the energy non-stop. For portable devices,
energy is a problem: we can only plug it in once in a while, and in a small
volume, we can only a limited amount of energy. So, for such devices, the main
resource limitation is energy.

This require a serious change in algorithms – since most traditional algo-
rithms are designed to minimize computation time, without taking into account
energy limitations. In particular, this means that energy-needing auxiliary pro-
cedures like garbage collection – that periodically frees the no-longer-used part
of computer memory – have to be performed only based on need, and not, as
in usual computers, periodically or whenever this leads to faster computations;
see, e.g., [2] and references therein.

For example, a regular laptop usually updates when it is idle, when it is not
doing any computations:

• this preserves its computational speed when it is used, and

• no matter how many updates we make, it does not affect its computing
abilities.

For portable devices, any such procedure uses some portion of stored energy, so
it needs to be performed as rarely as possible.

The corresponding optimization of computations is a very challenging task,
especially taking into account that some operating systems running on this
devices are proprietary. Since the operating system uses a significant amount of
energy, we thus face a partly-black-box problem even when the computational
algorithms that we run on these devices are white-box ones; see, e.g., [30].

Resource limitations of regular-size computing: cost and cloud com-
puting. For regular-size computing, computational ability is not a problem –
otherwise, we would have needed a high-performance computer. As we have
mentioned earlier, for such computers, energy is also not a problem: we just
plug in. So is there any limited resource? Yes, a very mundane one: money.

The possibility to save money comes from the fact that the amount of needed
computations changes with time:

• we have daily fluctuations, since most computations are performed at day-
time,

• we have seasonal computations – e.g., a tax-advising company needs a
lot of computations before the taxes deadline, stores need to perform
more computations before Christmas, when many people are shopping
for Christmas gifts, etc.

In all these cases, we have a choice:

• we can buy as many computers that we need at peak times, or

• we can buy fewer computers and at peak time, rent computation time on
other computers.

4

Computations involving rented computation time are known as cloud computing;
see, e.g., [5, 15, 16, 24, 29]. This name comes from the fact that we do not care
where exactly these computations are performed – as long as they are performed.
So, the possible locations of processors performing such computations do not
form a clear shape, the resulting geographic shape is amorphous and often fast-
changing, like a cloud in the sky.

So how much computing power should we buy and how much should we
rent? Detailed answers to this question can be found in [9, 11, 12, 13]. In this
paper, we show the optimal money-saving solution for the simplest case, when
we have:

• full information about the costs and

• full information about our computational needs.

This means, in particular, that we know:

• the cost c0 per computational step of in-house computations (including
the corresponding part of the cost of buying the computers),

• the cost c1 > c0 per computational step of rented out-of-house computa-
tions, and

• probability distribution of the future computer needs x, which can be
described, e.g., by the probability density function (pdf) ρ(x).

Based on this information, we need to select the optimal amount x0 of compu-
tational power that we should buy.

For each value x > x0, we rent the missing amount x− x0 of the computa-
tional power. Thus, the overall expected cost of all these computations is equal
to

c0 · x0 + c1 ·
∫ ∞
x0

c1 · (x− x0) · ρ(x) dx.

To find the optimal value x0, we can differentiate this expression with respect
to x0 and equate the derivative to 0. As a result, we get the equation

F (x0) = 1− c0
c1
,

where F (x) is the cumulative distribution function corresponding to the given
pdf. This equation described the optimal amount of computing power that we
should buy.

Comment. In [9, 11, 12, 13], one can also find:

• algorithms for solving this problem in more realistic settings, when we
know the costs and needs with some uncertainty,

• algorithms for deciding when a long-term contract is beneficial, and

5

• algorithms that help companies providing cloud computing to find the
optimal locations of their computers around the world.

Resource limitations of large-scale computing: energy again. For large-
scale computing, as we have mentioned earlier, one of the main problems is that
some important practical problems still cannot be solved on such computers
– computer engineers are working on this. For the existing computers, what
is the main limitation? Somewhat surprisingly, the main limitation is again
energy, the same as for small-scale computing. Indeed, we can simply plug in a
regular-size computer, but a usual company-wide or university-wide connection
can only support a limited number of such plugged-in computers.

For a high-performance computer – which, crudely speaking, consists of hun-
dreds and thousands of usual computers – we need to build a special power
station, and even this may not be sufficient. How can we minimize the power
needed for computations?

To answer this question, we need to go back to computer design:

• When we design a high-performance computer, we want to maximize the
overall number of computations per second. From this viewpoint, a seem-
ingly natural idea is to run all the processors at their maximum speed.

• It turns out that from the viewpoint of energy consumption, this is not
the best arrangement.

To be more precise, if the power Pi used by each processor i was exactly pro-
portional to this processor’s computation speed fi – i.e., to the number of com-
putational operations per second, this would not matter:

• if Pi = k · fi,

• then, no matter how we distribute the task between processors, the over-
all power P would be similarly proportional to the overall number f of
computational steps per second: P = k · f .

In practice, however, the linear dependence of Pi on fi is only a rough approx-
imation, the actual dependence Pi = F (fi) is non-linear.

As a result, instead of having all the processor work at their maximal speed,
a better idea is:

• to have each processor work at the speed fi at which the ratio
Pi

fi
=
F (fi)

fi
is the smallest possible, and

• to use more processors if needed.

If at some point, the task requires a smaller overall computation speed f , then,
to minimize energy consumption:

• we make some processors idle, while

6

• others will work at their optimal speed (optimal in terms of energy con-
sumption).

Quantum computing and its resource limitations. As we have mentioned
several times, there is a practical need to increase computation speed beyond
what we can do now. This need faces a fundamental physical limitation: that,
according to relativity theory, the speed of all processes is limited by the speed
of light. As a result:

• for a usual laptop of approximately 30 cm size, it takes 1 nanosecond for
the light to travel from one side of the computer to another, and

• during this time, even the cheapest 4-GHz laptop performs 4 operations.

To drastically speed up processing, we need to drastically decrease the computer
size – and this means to make memory cells drastically smaller. Already each
cell consists of thousands of molecules. With further size decrease, we will get
to the level of individual molecules – and at this level, we have to take into
account physical laws of the micro-world – the law of quantum physics.

Computations that take quantum effects into account are know as quantum
computing; see, e.g., [21]. One of the main features of quantum physics – see,
e.g., [4, 27] – is that, in addition to classical states s, s′, . . . – which, in quantum
physics, are denoted by |s〉, |s′〉, etc. – we can also have superpositions of these
states, i.e., states of the type

cs|s〉+ cs′ |s′〉+ . . . ,

where cs, cs′ , . . . , are complex values for which

|cs|2 + |cs′ |2 + . . . = 1.

If we measure, in this superposition state, a classical variable v, then we get
the value v(s) with probability |cs|2, the value v(s′) with probability |cs′ |2, etc.
The sum of all these probabilities should add to 1 – which explains the above
condition on the values cs, cs′ , . . .

In particular, a quantum analogue of the usual bit – i.e., an element that
can be in two possible states 0 and 1 – is a quantum bit (qubit, for short), i.e.,
the state of the type

c0|0〉+ c1|1〉.

Similarly, a quantum analogue of a 2-bit state is a general 2-qubit state

c00|00〉+ c01|01〉+ c10|10〉+ c11|11〉,

etc.
There are many efficient quantum algorithms, e.g., Grover’s algorithm [6, 7,

21].

• This algorithm enables to find an element with a given property in an
unsorted n-element array in time proportional to

√
n.

7

• On the other hand, for non-quantum algorithms, not to miss the desired
element, we need to look at all n elements, so we need at least n compu-
tational steps, and n�

√
n.

Grover’s algorithm requires n-qubit states. At this moment, the number of
available qubits is the main limitation to quantum computing, the main limited
resource. What happens if we only have s < n qubits, i.e., if we can only
implement s-qubit states? In this case, we can:

• divide the n-element array into n/s fragments of size s, and

• apply Grover’s algorithms to each fragment; see, e.g., [14].

For each fragment, Grover’s algorithm requires
√
s steps, so the overall compu-

tation time will be
n

s
·
√
s =

n√
s

. This amount:

• is still smaller than the time n needed in the non-quantum case, and

• decreases as the resource bound s increases (and reaches the Grover’s value
t ∼
√
n when we reach the case s = n).

3 Black-Box Computing: Related Resource Lim-
itations

General case. For black-box computing, when computations include calls to
a “black-box” (proprietary or classified) program, a natural idea is to minimize
the number of such calls:

• For proprietary programs, when we often need to pay for each class, this
minimizes the overall costs.

• For classified programs, when each call is an extra vulnerability, this min-
imizes the risk.

• For programs that take a long time to compute, this also minimizes the
overall computation time.

What can we compute in this manner? Usually, commercial software
provides a turn-key solution to the corresponding problem, a solution that does
not require additional programming. There exist commercial software for deep
learning, for solving partial differential equations, etc.

This software produces the result y = f(x1, . . . , xn) of processing the inputs
x1, . . . , xn, but what is usually does not do is produce the accuracy of this re-
sult. To be more precise, most black-box packages compute the result implicitly
assuming that the inputs are exactly known. In practice, the inputs come from
measurements, and measurements are never absolutely accurate: the result x̃i
of measuring the i-th input are, in general, different from the actual (unknown)
value xi of this input.

8

Thus, when we apply the black-box algorithm f to the measurement results
x̃i, the result ỹ of this computation will be, in general, different from the desired
value y = f(x1, . . . , xn):

ỹ = f(x̃1, . . . , x̃n) 6= y = f(x1, . . . , xn).

An important question is: how accurate is the computation result? In other

words, how big can the difference ∆y
def
= ỹ = y be?

This question is very practically important. For example, if we are prospect-
ing for oil and we learned that the given area contains ỹ = 200 million tons,
then:

• if this amount is 200± 20, this is good news and we should start drilling,
but

• if it is 200±300, then maybe there is no oil at all, and it is better to perform
additional measurements before we spend a large amount of money on
possibly useless drilling.

Let us formulate this problem in precise terms. Usually, the measurement

errors ∆xi
def
= x̃i − xi are relatively small. So, taking into account that xi =

x̃i −∆xi, we can expand the expression

∆y = f(x̃1, . . . , x̃n)− f(x̃1 −∆x1, . . . , x̃n −∆xn)

in Taylor series and keep only linear terms in this expansion. As a result, we
get the expression

∆y =

n∑
i=1

ci ·∆xi,

where ci
def
=

∂f

∂xi
.

What do we know about the measurement errors?

• In some cases, we know the probability distribution of each measurement
error ∆xi, and we know that these measurement errors are independent.
In many cases, this distribution is normal (Gaussian) with mean 0 and
known standard deviation σi.

• In other cases, we do not have any information about the probabilities, we
only know the upper bound ∆i on the absolute value of the corresponding
measurement error: |∆xi| ≤ ∆i; see, e.g., [23].

How can we use this information to find bounds on ∆xi?

Seemingly natural idea. If we know the values ci, then, e.g., for the normal

distribution, we can conclude that the linear combination
n∑

i=1

ci · ∆xi is also

normally distributed, with mean 0 and standard deviation σ =

√
n∑

i=1

c2i · σ2
i .

9

In case of upper bounds, when each measurement error ∆xi can take any

value from the interval [−∆i,∆i], the largest possible value of the sum
n∑

i=1

ci ·∆xi
is attained when each term ci ·∆xi in this sum is the largest possible.

• For ci ≥ 0, the term ci ·∆xi is increasing, so its largest value is attained
when ∆xi attains its largest value ∆i. The corresponding largest value of
the i-th term is ci ·∆i.

• For ci ≤ 0, the term ci ·∆xi is decreasing, so its largest value is attained
when ∆xi attains its smallest value −∆i. The corresponding largest value
of the i-th term is −ci ·∆i.

In both cases, the largest value of the i-th term is |ci| ·∆i, so the largest value
∆ of the sum ∆y is equal to

∆ =

n∑
i=1

|ci| ·∆i.

Straightforward approach and its limitations. If we knew the values ci,
then we could use the above formulas and find the desired characteristic σ or ∆
of the approximation error ∆y.

The algorithm f(x1, . . . , xn) is given as a black box, we do not know the cor-
responding expression and thus, we cannot simply differentiate this expression.
However, what we can do is use numerical differentiation, according to which,
for sufficiently small value hi, we have

ci =
∂f

∂xi
≈ f(x̃1, . . . , x̃i + hi, x̃i+1, . . . , x̃n)− ỹ

hi
.

This way, we get the desired expressions for σ and ∆ – but we need to make
n + 1 calls to f : the first call to compute ỹ and then n more calls to compute
n partial derivatives ci.

In many data processing algorithms, we use thousands of inputs, and each
call to f may require minutes or even hours, so this is not a very feasible idea.
What can we do?

Case of probability distributions: Monte-Carlo simulations. In situa-
tions when we know the probability distributions, the answer is well known: use
Monte-Carlo simulations. Namely, for some integer N , we:

• N times simulate the variables δx
(k)
i , k = 1, . . . , N , whose distribution

is the same as the distribution of the corresponding measurement errors
∆xi, and then

• compute the values

δ(k) = f(x̃1, . . . , x̃n)− f(x̃1 − δx(k)1 , . . . , x̃n − δx(k)n).

10

By using the same Taylor expansion as before, we conclude that

δ(k) =

n∑
i=1

ci · δx(k)i .

Since the values δx
(k)
i have the same distribution as the measurement errors

∆xi, we can conclude that the distribution of the values δ(k) is exactly the same
as the desired distribution of the approximation errors ∆y.

In particular, for the normal distribution, we can estimate σ as

σ ≈

√√√√ 1

N
·

N∑
k=1

(
δ(k)

)2
.

Good news is that the accuracy of this estimation is proportional to
1√
N

(see,

e.g., [26]) and does not depend on the number of inputs n.

For example, if we want to find σ with accuracy
1√
N

= 20%, we need to

take N = 25 iterations and thus, 25 calls for the program f – which is much
smaller than thousands of calls needed for straightforward estimation.

What if we only know the upper bounds? At first glance, in this case
the situation is hopeless: we do not know what distribution to use. However,
interestingly, a Monte-Carlo approach is possible in this case as well; see, e.g.,
[10, 20]. The idea is to use Cauchy distribution, i.e., the distribution with
probability density function

ρ(x) =
1

π ·∆
· 1

1 +
(x

∆

)2 .
The use of Cauchy distribution is based on the following property of this distri-
bution:

• if independent random variables ∆x1, . . . , ∆xn are Cauchy-distributed
with parameters ∆i,

• then the linear combination
n∑

i=1

ci ·∆xi of these random variables is also

Cauchy-distributed, with parameter ∆ =
n∑

i=1

|ci| ·∆i.

This expression is exactly what we want.
Thus, to find ∆:

• we simulate δx
(k)
i to be Cauchy-distributed with parameter ∆i;

11

• then the values

δ(k) = f(x̃1, . . . , x̃n)− f(x̃1 − δx(k)1 , . . . , x̃n − δx(k)n)

are Cauchy-distributed with the desired value of the parameter ∆. We
can then find this value ∆ by applying, e.g., the Maximum Likelihood
method [26].

How quantum computing can help. Sometimes, some parts of the input are
irrelevant. For example, to predict tomorrow’s weather, if the wind blows from
the North, then what was to the south of this area does not matter. If we could
find such irrelevant bits and not process them, this will make our computations
faster. How can we find such irrelevant bits?

Here, quantum computing can help in the following way. In the simplest
case, in which the input x is just one bit, and we consider one bit f(x) of
the output, the question is whether the input is relevant at all, i.e., whether
f(0) = f(1).

• In non-quantum computing, we can only have inputs 0 or 1. So, to check
the equality f(0) = f(1), we need to call f twice: for x = 0 and for x = 1.

• It turns out that in quantum computing, we can check this property by us-
ing only one call to f – but in this call, the input should be a superposition
of 0 and 1; see, e.g., [8, 21].

A similar reduction is possible for some multi-bit cases [21].

4 Measurements under Limited Resources: Two
Case Studies

Two types of situations. In addition to limited resources for computations,
we can (and do) also have limited resources for measurements. In this section,
we consider case studies covering two possible types of situations: when we can
only measure individual quantities, and when we can measure combinations of
different quantities.

Measuring individual quantities: general description and the case
study of a robotic boat. Measurements require even more resources than
computations: they require time, they require energy. It is therefore desirable
to minimize the number of measurements that we need to describe some spatial
or temporal-spatial phenomenon with a given accuracy.

In some cases, we need to develop a measurement schedule at the very begin-
ning. For this case, general ideas on how to minimize the number of measure-
ments, see, e.g., [17, 18, 19] and references therein. Further minimization can
be achieved if we make the measurement plan adaptive: we will decide what to
measure next based on the results of previous measurements. In this section, let

12

us concentrate on the case of a single passive measuring device: e.g., a spaceship
following a given trajectory or a robotic boat floating along the river.

This choice of examples may need some explanation. Probably no one will
wonder why we need measurements performed by a spaceship, but why do we
need a floating robotic boat? The answer to this question is very straightfor-
ward: with planes, satellites, and drones, most of the Earth’s surface has been
accurately mapped. We know the elevations at different locations, we know
how much plants are there. Similarly, we have a reasonable understanding of
the oceans, and of major rivers. The least explored geographic objects are small
rivers. To get a complete picture of Earth’s geography, we need to describe their
depths and flows at different locations. This is important for ecological studies,
this is important to understand how water circulates – since big rivers are usu-
ally fed by smaller ones. To get a good description of a small river, the usual
way is to traverse the river and measure the corresponding parameters as we
go. The problem is that there are many small rivers, and it is not realistic to
expect human researchers to traverse all of them.

To solve this problem, researchers are working on designing robotic boats;
see, e.g., [1] and references therein. The idea is to place this boat at the origin
of the small river and let is flow along the river and measure the corresponding
parameters. The problem is that measurements and transmission of the result-
ing data use some energy, and since boat is autonomous, it can only carry a
limited amount of energy. So, the question is: how to get the desired map of
the river by using the smallest possible number of measurements.

The main idea behind this minimization is straightforward:

• when we are passing through a part of the trajectory where the depth (or
any other quantity of interest) is approximately constant, then there is no
sense of measuring this quantity too frequently; but

• when we come to the part of the trajectory where the quantity starts
changing, then we must measure it with the highest possible frequency.

Let us describe the corresponding problem in precise terms. We know reasonably
well the trajectory followed by a spaceship or the trajectory followed by a floating
robotic boat or by another similar device. Let x be the parameter describing
the device’s location on this trajectory – e.g., the length of the path that it
has already covered along this trajectory. At some values x, we perform some
measurements. We may want to measure some quantity in its location – e.g., the
depth at this location. We may want to measure some quantity that depends
not only x, but also on some other parameters y1, For example, for the boat,
we may want, by sending a signal in several directions, to measure the depths
not only right beneath the boat, but also on other locations (x, y1) on the line
orthogonal to the trajectory.

In general, based on the measurements, we want to find the while dependence
q(x, y1, . . .) of the measured quantity on all these parameters, and we want to
measure all these values with accuracy ε. How can we reach this goal by using
the smallest possible number of measurements?

13

A natural idea is to use a simple approximation

q(x, y1, . . .) = C1 · q1(x, y1, . . .) + . . .+ Ck · qk(x, y1, . . .)

to describe the local behavior of the corresponding field. In this approximation:

• the functions q1(x, y1, . . .), . . . , qk(x, y1, . . .) are fixed, and

• the parameters C1, . . . , Ck change from location to location.

In many cases, the field is smooth, so it can be locally approximated by
linear or quadratic functions. For example, if we are interested in the depth
d(x) at different points along the trajectory, then we can use approximations
d(x) ≈ C1 + C2 · x or take d(x) ≈ C1 + C2 · x+ C3 · x2.

• In the first case, k = 2, q1(x) = 1, and q2(x) = x.

• In the second case, k = 3, q1(x) = 1, q2(x) = x, and q3(x) = x2.

How we proceed depends on:

• whether we know the probability distribution of the measurement error –
e.g., Gaussian with standard deviation σ – or

• whether we only know the bound ∆ on the measurement error.

In both cases, we first perform k + 1 (or more) measurements corresponding to

the values x(i), y
(i)
1 , . . . , where i = 1, 2, . . . , k+ 1. Let q(i) be the corresponding

measurement results.
In the probabilistic case, we form the resulting system of approximate equa-

tions:

q(1) ≈ C1 · q1
(
x(1), y

(1)
1 , . . .

)
+ . . .+ Ck · qk

(
x(1), y

(1)
1 , . . .

)
;

. . .

q(k+1) ≈ C1 · q1
(
x(k+1), y

(k+1)
1 , . . .

)
+ . . .+ Ck · qk

(
x(k+1), y

(k+1)
1 , . . .

)
.

We can use the usual Least Squares method (see, e.g., [26]) to find the esti-

mates Ĉ1, . . . , Ĉk for the corresponding parameters C1, . . . , Ck. This method
also provides us with the variance of these estimates, and with the covariances
describing correlation between these estimates.

Based on these variances and covariances, for all future values x and for
all corresponding values y1, . . ., we can compute the standard deviation for the
predicted value

q(x, y1, . . .) = Ĉ1 · q1(x, y1, . . .) + . . .+ Ĉk · qk(x, y1, . . .).

As long as this value is smaller than or equal to the desired accuracy ε, we do
not perform any additional measurements. The next group of measurements is

14

performed at the first future value x at which the standard deviation becomes
equal to ε.

In the case of upper bounds, for each future value x and for all possible values
of the variables y1, . . ., we find the range [q, q] of possible values q(x, y1, . . .) by
solving the following two optimization problems. To find the upper bound q,
we maximize the expression

C1 · q1(x, y1, . . .) + . . .+ Ck · qk(x, y1, . . .)

under the constraints

q(1) −∆ ≤ C1 · q1
(
x(1), y

(1)
1 , . . .

)
+ . . .+ Ck · qk

(
x(1), y

(1)
1 , . . .

)
≤ q(1) + ∆;

. . .

q(k+1) −∆ ≤ C1 · q1
(
x(k+1), y

(k+1)
1 , . . .

)
+ . . .+ Ck · qk

(
x(k+1), y

(k+1)
1 , . . .

)
≤

q(k+1) + ∆.

To find the lower bound q, we minimize the same expression under the same
constraints. In both optimization problems, we optimize a function which is
linear in terms of the unknowns C1, . . . , Ck under constraints which are also
linear in terms of the unknowns. Such optimization problems are known as
linear programming problems. There exist efficient algorithms for solving such
problems; see, e.g., [3].

The next measurement is performed at a location for which the prediction
accuracy is ε, i.e., for which the interval [q, q] has the form [q̃− ε, q̃+ ε] for some
q̃, i.e., equivalently, for which q − q = 2ε.

Measuring combinations of quantities: general description and the
case study of Covid-19 testing. When we measure, we are interested in
some property. In some situations, only a few objects have the property of
interest. In such situations, the possibility to measure combinations of quantities
corresponding to individual objects can save on the number of measurements.

For example, if we are prospecting for oil, we save a lot of efforts if, instead
of drilling at each possible location, we perform some measurements of the area
as a whole and only drill in those areas which, according to these combined
measurements, have oil.

Another example is Covid-19 testing. In the ideal world we should test
everybody, but the number of available test kits is limited. If instead of testing
each person, we apply the test to a mixture of samples from a group of several
people, we can decrease the required number of tests kits – since:

• we can dismiss all the groups where no one was Covid-positive, and

• we need to continue testing only folks from the remaining groups; see, e.g.,
[22, 25, 28].

15

In [28], we considered the arrangement when after the group testing, we
individually test everyone from still-suspicious groups. However, if there are
many such folks, a reasonable idea is to combine these remaining folks into
new groups and test each new group, etc. Let us analyze what is the optimal
approach to such multi-stage group testing.

Let p denote the proportion of people in a given area that test positive. This
number can be (and is) estimated based on the preliminary random testing. Let
us denote by N the total number of people in the given area that we want to
be tested. By Nk, we will denote the number of people who need to be tested
on stage k. In the beginning, all N folks need to be tested, so N1 = N ; then we
will have N2 < N , etc.

We need to select the size sk of the groups on each stage k.

• If this size is too small, we are not benefiting too much in comparison with
individual testing.

• If the size sk is too large, then most groups will have someone who is
positive, so we are not saving anything either.

Let us decide on the optimal sizes s1, s2, . . .

At the first stage, we test N people. These people are divided by
N

s1
groups

with s1 folks in each group. Each group is tested as a whole; the conclusion
about each group is:

• either that everyone in this group is negative,

• or that someone in this group is positive.

The probability that a person is negative is 1−p. Thus, the probability that all
s1 folks in the group are negative is equal to (1 − p)s1 . As we have mentioned
earlier, such group testing only makes sense if most groups will be dismissed after
this testing, i.e., when (1− p)s1 ≈ 1. In this case, we have (1− p)s1 ≈ 1− p · s1.
Thus, the proportion of groups that remain suspicious after testing is p · s1. So,

after testing, we have
N

s1
·(p ·s1) = N ·p suspicious groups. Each of these groups

contains s1 folks, so overall, we have N2 = N · p · s1 folks that need to be tested
on the next stage.

Similarly, on the k-th stage, we start with Nk folks that still need to be

tested. We divide these folks into
Nk

sk
groups and test each group as a whole.

For this testing, we need
Nk

sk
test kits. After this testing stage, we end up with

Nk+1 = Nk · p · sk folks that still need to be tested on the next stage.
On each stage, some folks are certified to be negative. So, on each stage, the

number of people who still need to be tested decreases. After several stages,
the number of remaining folks will become so small than group testing does
not help; the remaining folks need to be individually tested. Let us denote the
number of stages by m. In terms of this notation, we need to individually test

16

all Nm+1 folks remaining after the last stage m. This individual testing will
require Nm+1 test kits.

We want to minimize the overall number of tests, i.e., we want to minimize
the sum:

N1

s1
+
N2

s2
+ . . .+

Nm

sm
+Nm+1,

where N1 = N , Nk+1 = Nk · p · sk, and for all i, we have p · si ≤ ε for some
positive value ε < 1. Let us find the optimal values si. It turns out to be easier
to find these optimal values si in the reverse order:

• first, we find the optimal value sm,

• then, we find the optimal value sm−1, . . .

Suppose that we have already selected the values s1, . . . , sm−1, and we want
to select the value sm. The only two terms in the above sum that depend on
this variable sm are the last two terms

Nm

sm
+Nm+1 =

Nm

sm
+Nm · p · sm.

Differentiating this expression with respect to sm and equating the derivative
to 0, we conclude that

−Nm

s2m
+Nm · p = 0,

i.e., that sm = p−1/2 =
1
√
p

. For this value sm, the sum of the two last terms

in the above expression for the overall number of tests is equal to

Nm

sm
+Nm · p · sm = Nm ·

(
p1/2 +

p

p1/2

)
= 2 ·Nm · p1/2.

Here, Nm = Nm−1 · p · sm−1, so, in terms of Nm−1, the sum of the last two
terms takes the form

2 ·Nm · p1/2 = 2 ·Nm−1 · p · sm−1 · p1/2 = 2 ·Nm−1 · p3/2 · sm−1.

Now, let us assume that we have already selected the values s1, . . . , sm−2,
and we want to select the value sm−1. We already know the expression for the
last two terms, so the last three terms – the ones depending on sm−1 – take the
form

Nm−1

sm−1
+ 2 ·Nm · p1/2 =

Nm−1

sm−1
+ 2 ·Nm−1 · p3/2 · sm−1.

Differentiating this expression with respect to sm−1 and equating the derivative
to 0, we conclude that

−Nm−1

s2m−1
+ 2Nm−1 · p3/2 = 0,

17

i.e., that sm−1 = 2−1/2 · p−3/4. For this value sm−1, the sum of the last three
terms is equal to

Nm−1 · 21/2 · p3/4 + 2Nm−1 ·
1

21/2 · p3/4
· p3/2 = 2 · 21/2 · p3/4 ·Nm−1 =

23/2 · p3/4 ·Nm−1.

By induction, we can prove that the optimal value of sm−i is equal to

sm−i = 2−(1−2
−i) · p−(1−2

−(i+1)),

and the sum of the terms starting with
Nm−i

sm−i
in the expression for the overall

number of tests is equal to

Nm−i

sm−i
+ . . .+

Nm

sm
+Nm+1 = Nm−i · 21−2

−i

· p1−2
−(i+1)

.

In particular, for i = m − 1, we conclude that the overall number of tests is
equal to

N1

s1
+ . . .+

Nm

sm
+Nm+1 = N · 21−2

−(m−1)

· p1−2
−m

.

In this scheme, the values si · p decrease as i increases, so the condition that
si ·p ≤ ε for all i is equivalent to requiring that the largest of the values si·, i.e.,
the value s1 · p, is smaller than or equal than ε. For i = m− 1, we get

s1 · p = 2−(1−2
m−1) · p−2

−m

.

For large m, 2−m ≈ 0, so the number of needed test kits is ≈ 2p ·N – only
twice as many as the number of infected people. This is much much better than
testing everyone individually.

Comment. A more accurate estimate leads to const · p · | ln(p)|.

Is this method optimal? This is indeed the best we can do – at least asymp-
totically the best. Indeed, we need to find N ·p elements out of N . The number
of such possible arrangement is(

N

p ·N

)
=

N !

(p ·N)! · ((1− p) ·N)!
.

Each test has 2 possible results, so after t tests, we have 2t possible combinations

of results. To get all

(
N

p ·N

)
possible answers, we need to have 2t ≥

(
N

p ·N

)
,

i.e., we need t ≈ log2

(
N

p ·N

)
. Asymptotically, for each integer q, we have

q! ≈
(q
e

)q
, so

log2(q!) ≈ q · (log2(q)− log2(e)) = q · log2(q)− q · log2(e).

18

Thus,

t ≈ log2

(
N

p ·N

)
= log2(N !)− log2((p ·N)!)− log2((1− p) ·N)!) =

N · log2(N)−N · log2(e)− p ·N · log2(p ·N) + p ·N · log2(e)−
(1− p) ·N · log2((1− p) ·N) + (1− p) ·N · log2(e).

Terms proportional to log2(e) cancel each other. So, taking into account that
the logarithm of the product is equal to the sum of logarithms, we get

t ≈ N · log2(N)− p ·N · log2(N)− p ·N · log2(p)−

(1− p) ·N · log2(N)− (1− p) ·N · log2(1− p).
Terms proportional to N · log2(N) cancel each other, so

t ≈ −N · (p · log2(p) + (1− p) · log2(1− p)).

For small p, we have 1− p ≈ 1 and log2(1− p) ∼ p, so

(1− p) · log2(1− p) ∼ p� p · log2(p),

thus the smallest possible number of tests is indeed proportional to

N · p · | log2(p)|.

So, our method is indeed asymptotically optimal.

5 Acknowledgments

This work was supported in part by the National Science Foundation grants
1623190 (A Model of Change for Preparing a New Generation for Professional
Practice in Computer Science), and HRD-1834620 and HRD-2034030 (CAHSI
Includes).

The authors are greatly thankful to the conference organizers for their en-
couragement and support, and to Laura Alvarez for helpful discussions.

References

[1] L. V. Alvarez, H. A. Moreno, A. R. Segales, T. G. Pham, E. A. Pillar-Little,
and P. B. Chilson, “Merging Unmanned Aerial Systems (UAS) imagery
and echo soundings with an adaptive sampling technique for bathymetric
surveys”, Remote Sensing, 2018, Vol. 10, No. 9, doi:10.3390/rs10091362.

[2] G. Arellano, E. Hudgins, D. Pruitt, A. Veliz, E. Freudenthal, and
V. Kreinovich, “How to gauge disruptions caused by garbage collection: to-
wards an efficient algorithm”, Journal of Uncertain Systems, 2016, Vol. 10,
No. 1, pp. 4–9.

19

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, MIT Press, Cambridge, Massachusetts, 2009.

[4] R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on
Physics, Addison Wesley, Boston, Massachusetts, 2005.

[5] B. Furht and A. Escalanate, Handbook of Cloud Computing, Springer, New
York, 2010.

[6] L. K. Grover, “A fast quantum mechanical algorithm for database search”,
Proceedings of the 28th ACM Symposium on Theory of Computing, 1996,
pp. 212–219.

[7] L. K. Grover, “Quantum mechanics helps in searching for a needle in a
haystack”, Physical Reviews Letters, 1997, Vol. 79, No. 2, pp. 325–328.

[8] O. Kosheleva and V. Kreinovich, “How to introduce technical details of
quantum computing in a theory of computation class: using the basic case
of the Deutsch-Jozsa algorithm”, International Journal of Computing and
Optimization, 2016, Vol. 3, No. 1, pp. 83–91.

[9] V. Kreinovich, “Towards optimizing cloud computing: an example of opti-
mization under uncertainty”, In: S. U. Khan, A. Y. Zomaya, and L. Wang
(eds.), Scalable Computing and Communications: Theory and Practice,
John Wiley & Sons and IEEE Computer Society Press, 2013, pp. 613–627.

[10] V. Kreinovich and S. Ferson, “A New Cauchy-based black-box technique for
uncertainty in risk analysis”, Reliability Engineering and Systems Safety,
2004, Vol. 85, No. 1–3, pp. 267–279.

[11] V. Kreinovich and E. Gallardo, “Optimizing cloud use under interval un-
certainty”, In: R. Wyrzykowski, E. Deelman, J. Dongarra, K. Karczewski,
J. Kitowski, and K. Wiatr (eds.), Parallel Processing and Applied Mathe-
matics, Springer Verlag, Cham, Switzerland, 2016, pp. 435–444.

[12] O. Lerma, E. Gutierrez, C. Kiekintveld, and V. Kreinovich, “Towards op-
timal knowledge processing: from centralization through cyberinsfrastruc-
ture to cloud computing”, International Journal of Innovative Manage-
ment, Information & Production (IJIMIP), 2011, Vol. 2, No. 2, pp. 67–72.

[13] L. O. Lerma and V. Kreinovich, Towards Analytical Techniques for Opti-
mizing Knowledge Acquisition, Processing, Propagation, and Use in Cyber-
infrastructure and Big Data Applications, Springer Verlag, Cham, Switzer-
land, 2018.

[14] L. Longpré and V. Kreinovich, “Can quantum computers be useful when
there are not yet enough qubits?”, Bulletin of the European Association for
Theoretical Computer Science (EATCS), 2003, Vol. 79, pp. 164–169.

20

[15] D. Marinescu, Cloud Computing: Theory and Practice, Morgan Kaufmann,
Waltham, Massachusetts, 2013.

[16] P. Mell and T. Grance, The NIST Definition of Cloud Computing, US
National Institute of Standards and Technology Special Publication 800-
145, Gaithersburg, Maryland, 2011.

[17] H. T. Nguyen, O. Kosheleva, V. Kreinovich, and S. Ferson, “Trade-off
between sample size and accuracy: case of dynamic measurements under
interval uncertainty”, In: V.-N. Huynh, Y. Nakamori, H. Ono, J. Lawry,
V. Kreinovich, and H. T. Nguyen (eds.), Interval/Probabilistic Uncertainty
and Non-Classical Logics, Springer-Verlag, Berlin-Heidelberg-New York,
2008, pp. 45–56.

[18] H. T. Nguyen, O. Kosheleva, V. Kreinovich, and S. Ferson, “Trade-off be-
tween sample size and accuracy: case of measurements under interval un-
certainty”, International Journal of Approximate Reasoning, 2009, Vol. 50,
No. 8, pp. 1164–1176.

[19] H. T. Nguyen and V. Kreinovich, “Trade-off between sample size and
accuracy: case of static measurements under interval uncertainty”, In:
V.-N. Huynh, Y. Nakamori, H. Ono, J. Lawry, V. Kreinovich, and
H. T. Nguyen (eds.), Interval/Probabilistic Uncertainty and Non-Classical
Logics, Springer-Verlag, Berlin-Heidelberg-New York, 2008, pp. 32–44.

[20] H. T. Nguyen, V. Kreinovich, B. Wu, and G. Xiang, Computing Statistics
under Interval and Fuzzy Uncertainty, Springer Verlag, Berlin, Heidelberg,
2012.

[21] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information, Cambridge University Press, Cambridge, U.K., 2000.

[22] T. S. Perry, “Researchers are using algorithms to tackle the coronavirus test
shortage: the scramble to develop new test kits that deliver faster results”,
IEEE Spectrum, 2020, Vol. 57, No. 6, p. 4.

[23] S. G. Rabinovich, Measurement Errors and Uncertainties: Theory and
Practice, Springer, New York, 2005.

[24] J. Rhoton, Cloud Computing Explained, Recursive Press, 2010.

[25] N. Shental, S. Levy, V. Wuvshet, S. Skorniakov, Y. Shemer-Avni, A. Por-
gador, and T. Hertz, Efficient High Throughput SARS-CoV-2 Testing to
Detect Asymptomatic Carriers, medRxiv preprint
https://doi.org/10.1101/2020.04.14.20064618, posted on April 20, 2020.

[26] D. J. Sheskin, Handbook of Parametric and Non-Parametric Statistical Pro-
cedures, Chapman & Hall/CRC, London, UK, 2011.

21

[27] K. S. Thorne and R. D. Blandford, Modern Classical Physics: Optics, Flu-
ids, Plasmas, Elasticity, Relativity, and Statistical Physics, Princeton Uni-
versity Press, Princeton, New Jersey, 2017.

[28] J. Urenda, O. Kosheleva, M. Ceberio, and V. Kreinovich, “How mathemat-
ics and computing can help fight the pandemic: two pedagogical examples”,
Proceedings of the Annual Conference of the North American Fuzzy Infor-
mation Processing Society NAFIPS’2020, Redmond, Washington, August
20–22, 2020.

[29] A. T. Velte, T. J. Velte, and R. Elsenpeter, Cloud Computing: A Practical
Approach, McGraw-Hill, New York, 2010.

[30] Y. Zhang, Y. Liu, L. Zhuang, X. Liu, F. Zhao, and Q. Li, Accurate CPU
Power Modeling for Multicore Smartphones. Microsoft Research Report
MSR-TR-2015-9, available as
https://www.microsoft.com/en-us/research/publication/accurate-cpu-
power-modeling-for-multicore-smartphones/

22

	White- and Black-Box Computing and Measurements under Limited Resources: Cloud, High Performance, and Quantum Computing, and Two Case Studies -- Robotic Boat and Hierarchical Covid Testing
	Recommended Citation

	tmp.1603229912.pdf.6y7Ds

