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Egyptian Fractions as Approximators

Olga Kosheleva1 and Vladik Kreinovich2

Departments of 1Teacher Education and 2Computer Science
University of Texas at El Paso

500 W. University
El Paso, TX 79968, USA

olgak@utep.edu, vladik@utep.edu

Abstract

In ancient Egypt, fractions were represented as the sum of inverses to
natural numbers. Processing fractions in this representation is computa-
tionally complicated. Because of this complexity, traditionally, Egyptian
fractions used to be considered an early inefficient approach. In our pre-
vious papers, we showed, however, that the Egyptian fractions actually
provide an optimal solution to problems important for ancient Egypt –
such as the more efficient distribution of food between workers. In these
papers, we assumed, for simplicity, that we know the exact amount of
food needed for each worker – and that this value must be maintained
with absolute accuracy. In this paper, we show that the corresponding
food distribution can become even more efficient if we make the setting
more realistic by allowing “almost exact” (approximate) representations.

1 Formulation of the Problem

Egyptian fractions: reminder. In ancient Egypt, fractions were represented

as a sum of fractions of the type
1

n
, with the smallest possible number of terms;

see, e.g., [1, 2, 3, 4, 11] and references therein. For example,
5

12
was represented

as
5

12
=

1

3
+

1

12
. (1)

Traditional history-of-mathematics view on Egyptian fractions. Deal-
ing with such fractions is not computationally easy: e.g., multiplying two 3-term
Egyptian fractions would generate the sum of 3 · 3 = 9 term-by-term products,
and we face a complex problem of how to find the representation of this product
that uses the smallest number of terms. Because of this complexity, books on
history of mathematics usually dismiss Egyptian fractions as a not-very-effective
approach to representing fractions; see, e.g., [1, 4].
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What we showed in our previous paper: a reminder. In our paper [6],
we showed that Egyptian fractions actually provide an optimal solution to a
practical problem described in many papyri from ancient Egypt: how to divide
loaves of bread between multiple workers; see also [5, 7, 8, 9, 10].

Indeed, it is easy and fast to divide a rectangular-shaped bread into n equal
pieces along its long side: this requires n − 1 cuts. So, if want to give each
worker 5/12 of a loaf, a straightforward idea is to divide each loaf into 12 parts
and give 5 such parts to each worker. In particular, if we have 12 workers, then
we take 5 loaves and divide each of them into 12 parts. This requires 11 cuts
per loaf, to the total of 5 · 11 = 55 cuts.

We can do all this cutting much faster if we take into account representation
(1). For 12 workers, this means that we can:

• take 12 · 1

3
= 4 loaves and divide each loaf into 3 pieces; this requires

3− 1 = 2 cuts per loaf, to the total of 4 · 2 = 8 cuts, and

• take 12 · 1

12
= 1 loaf and divide it into 12− 1 = 11 cuts.

Overall, we need 11+8 = 19 cuts, which is much fewer than the original 55 cuts.

A general description of what is optimal. Each fraction
p

q
can be repre-

sented in many ways as a sum of different fractions, and each fraction
m

n
in this

sum can be represented as

m

n
=

1

n
+ . . . +

1

n
(m times).

Thus, we can represent each fraction
p

q
as a sum of fractions of the type

1

n
:

p

q
=

1

n1
+

1

n2
+ . . . +

1

nk
. (2)

Without losing generality, we can assume that the integers ni are listed in
increasing order, i.e., that n1 ≤ n2 ≤ . . . ≤ nk.

Let N be the least common multiple of all the values ni. Then, the rep-
resentation (2) means that to feed N workers, for each i from 1 to k, we take

N · 1

ni
loaves and cut each into ni pieces. This requires ni − 1 cuts per loaf, to

the total of

N · 1

ni
· (ni − 1) = N ·

(
1− 1

ni

)
.

Thus, the overall number of cuts is

N ·
(

1− 1

n1

)
+ N ·

(
1− 1

n2

)
+ . . . + N ·

(
1− 1

nk

)
=

2



N ·

(
k −

k∑
i=1

1

ni

)
= N ·

(
k − p

q

)
.

So, the number of cuts per worker is

k −
(

1

n1
+

1

n2
+ . . . +

1

nk

)
= k − p

q
.

Thus, to minimize the number of cuts, we need to minimize the number k of
terms in the representation (2) – which is exactly what the Egyptian fractions do!

Comment. Ancient Egyptians had additional restrictions on representation of
type (2): e.g., they required that all denominators ni be different. This addi-
tional requirement is not related to our optimality result, so we do not consider
it in this paper.

By the way, it would be interesting to understand the motivation behind
this additional requirement.

What we did in our previous paper and what are the remaining prob-
lems. In our previous paper, we describe an algorithm for computing the short-
est possible representation of a fraction in the form (2). From the theoretical
viewpoint, this solves the problem – although, of course, it is always desirable
to look for a more efficient algorithm.

The remaining problem is that for some fractions, the number of cuts is still
too large. The only reason why we need this many cuts is that we wanted to
exactly represent the original fraction. But from the practical viewpoint, it may
be beneficial to make slightly larger bread portions – we will spend slightly more
money on bread but save on cuts. In other words, in addition to the problem
of representing fractions in the form (2), we need to consider the problem of
approximating the fractions by expressions of type (2).

Let us formulate this approximation problem in precise terms.

Formulating the approximation problem in precise terms. We are given
two positive numbers:

• the price b of a loaf of bread, and

• the per-cut wages c that we need to pay the bread cutters.

We are also given the fractional part f ∈ (0, 1) of a loaf that needs to be given to
each worker. What we then need to do is minimize the overall extra expenses:
i.e., the cutting expenses plus extra-bread expenses per worker. In other words,
we need to find, among the tuples (n1, . . . , nk) for which

f ≤ 1

n1
+

1

n2
+ . . . +

1

nk
, (3)

the tuple for which the overall expenses

c ·
(
k −

(
1

n1
+

1

n2
+ . . . +

1

nk

))
+ b ·

(
1

n1
+

1

n2
+ . . . +

1

nk
− f

)
(4)
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are the smallest possible.

What we do in this paper. In this paper, we describe an algorithm for
solving the above optimal approximation problem.

2 Solution to the Problem

Let us first simplify the objective function. The above expression (4) can
be represented as

c · k + (b− c) ·
(

1

n1
+

1

n2
+ . . . +

1

nk
− f

)
+ c · f. (4a)

Adding a constant c·f to all the values of the objective function does not change
which values are larger and which are smaller. Thus, minimizing the expression
(4a) is equivalent to minimizing the expression

c · k + (b− c) ·
(

1

n1
+

1

n2
+ . . . +

1

nk
− f

)
. (4b)

Similarly, dividing all the values of the objective function by the same constant
b − c does not change wich value is larger and which value is smaller. So,
minimizing the expression (4b) is equivalent to minimizing the expression (4b)
divided by b− c, i.e., the expression

r · k +

(
1

n1
+

1

n2
+ . . . +

1

nk
− f

)
, (4c)

where we denoted r
def
=

c

b− c
.

To solve the corresponding problem, it is sufficient to solve an aux-
iliary problem for several values k: idea. Our idea is that for each value
k = 1, 2, ·, we find the values n1, . . . , nk that minimize the expression (4c).
Then, we find k for which the corresponding minimum is the smallest.

For each k, the term r ·k does not depend on the choice of ni, so minimizing
the expression (4c) is equivalent to finding the values n1, . . . , nk that minimize
the difference

1

n1
+

1

n2
+ . . . +

1

nk
− f ; (5)

(provided that this difference is non-negative).
Let dk denote the smallest possible value of this difference corresponding to

the given value k (we assume that for the given value k, there exist integers
ni that satisfy the condition (3)). Then, the smallest possible value of the
expression (4c) for given k is equal to

ek
def
= r · k + dk. (6)
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Thus, once we know all the values dk, we must find the value k that minimizes
the expression (6).

Each value f can be approximated, with any given accuracy, by a rational
number, and each rational number can be represented, for some k, in the form
(2). Thus if we approximate f with approximation error < r, then, for some k,
we will get dk < r and thus, ek < r · k+ r = r · (k+ 1). Once we reach the value
k for which dk < r, considering larger values k does not make sense: already
the first term in the expression (6) will be larger than the current value ek.

So, we arrive at the following reduction algorithm.

Reduction: algorithm. To solve the original optimization problems, for k =
0, 1, 2, . . . we compute dk and ek. We stop when dk < r. We then:

• select the value k for which ek is the smallest, and

• for the selected value k, we find the values n1, . . . , nk that minimize the
difference (5).

Now, all we need to do is to show how to compute dk.

Proposition 1. There exists an algorithm that, given f and k, computes the
smallest possible value dk.

Proof. Since n1 ≤ n2 ≤ . . . ≤ nk, we have

1

nk
≤ . . . ≤ 1

n2
≤ 1

n1
,

so the inequality (3) implies that

f ≤ k · 1

n1
,

which is equivalent to

n1 ≤
k

f
.

Thus, we need to consider only finitely many values n1.
For each of these values n1, (3) implies that

f − 1

n1
≤ 1

n2
+ . . . +

1

nk

hence

f − 1

n1
≤ (k − 1) · 1

n2

and

n2 ≤
k − 1

f − 1

n1

.

(If the difference is 0, then d1 = 0, so further computations are not needed.)
Thus, for each n1, we only need to consider finitely many values n2.
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In general, once we have selected the values n1, . . . , ni, then (3) implies that

f −
(

1

n1
+ . . . +

1

ni

)
≤ 1

ni+1
+ . . . +

1

nk

hence

f −
(

1

n1
+ . . . +

1

ni

)
≤ (k − i) · 1

ni+1

and

ni+1 ≤
k − i

f −
(

1

n1
+ . . . +

1

ni

) .

So overall, we need to consider a finite set of possible tuples (n1, . . . , nk). We
then select the tuple for which the difference (4) is the smallest. This is all we
need to do to compute the desired smallest value dk.

The proposition is proven.

How accurately can we thus represent a number? A natural question
is: what accuracy can we achieve by such an approximation? In this paper, we
provide the answer to this question for k = 1, k = 2, and k = 3.

Definition 1. For each positive integer k, by an accuracy ak of approximation
by a ≤ k-term Egyptian fraction, we mean the smallest number ak for which:
for every number f ∈ (0, 1), there exist integers n1, . . . , nj, j ≤ k for which

f ≤ 1

n1
+ . . . +

1

nj
≤ f + ak,

i.e., for which

0 ≤ 1

n1
+ . . . +

1

nj
− f ≤ ak.

Proposition 2. For k = 1, the accuracy a1 of approximation by a ≤ 1-term

Egyptian fraction is a1 =
1

2
.

Proof. The largest possible value of the expression
1

n
< 1 corresponds to the

smallest possible value n = 2. Thus, all values f >
1

2
have to be approximated

from above by the number 1 (in this case, no cuts are needed). For each ε > 0,

for the value f =
1

2
+ ε, the difference 1 − f is equal to

1

2
− ε, thus a1 cannot

be smaller than
1

2
.

The value a1 =
1

2
satisfies the desired condition:

• for values f ≤ 1

2
, we take n1 = 2 (i.e., we cut each loaf in half and give

each worked half of a loaf), and
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• for values f >
1

2
, we take n1 = 1 (i.e., we give each worker the whole loaf

and do not cut anything at all).

The proposition is proven.

Proposition 3. For k = 2, the accuracy a2 of approximation by a ≤ 2-term

Egyptian fraction is a2 =
1

6
.

Proof. Let us first find the largest possible value f < 1 that can be repre-
sented as

f =
1

n1
+

1

n2
.

In general, we could have n1 = 2 or n1 ≥ 3.

• For n1 = 2, to have
1

n1
+

1

n2
< 1, we must have

1

n2
<

1

2
, i.e., we must

have n2 > 2. The largest value of this fraction corresponds to the smallest
value of n2 that satisfies this inequality, i.e. to the value n2 = 3. In this
case,

1

n1
+

1

n2
=

1

2
+

1

3
=

5

6
.

• For n1 ≥ 3, due to n1 ≤ n2, we have

1

n1
+

1

n2
≤ 1

3
+

1

3
=

2

3
.

The upper bound
2

3
for cases n1 ≥ 3 is smaller than the value

5

6
achievable for

n1 = 2. Thus the largest values f < 1 that can be represented by a ≤ 2-term

Egyptian fraction is
5

6
.

So, each value f which is larger than
5

6
has to be approximated by number 1.

Hence, the value a2 cannot be smaller than the differences

1−
(

5

6
+ ε

)
=

1

6
− ε

for any ε > 0. Thus, we must have a2 ≥
1

6
.

To complete the proof, we need to show that every number f from the
interval (0, 1) can indeed be approximated by a ≤ 2-term Egyptian fraction

with accuracy
1

6
. Indeed:

• values v ∈
(

0,
1

6

]
can be approximated by

1

6
;

• values v ∈
(

1

6
,

1

3

]
can be approximated by

1

3
;
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• values v ∈
(

1

3
,

1

2

]
can be approximated by

1

2
;

• values v ∈
(

1

2
,

2

3

]
can be approximated by

2

3
=

1

2
+

1

6
;

• values v ∈
(

2

3
,

5

6

]
can be approximated by

5

6
=

1

2
+

1

3
;

• values v ∈
(

5

6
, 1

)
can be approximated by 1.

Thus indeed, a2 =
1

6
. The proposition is proven.

Proposition 4. For k = 3, the accuracy a3 of approximation by a ≤ 3-term

Egyptian fraction is a3 =
1

42
.

Proof. Let us first find the largest possible value f ∈ (0, 1) that can be repre-

sented as the sum
1

n1
+

1

n2
+

1

n3
of three inverses.

In general, we can have n1 = 2 or n1 > 2.
If n1 = 2, then we cannot have n2 = 2 – this would lead to the sum equal

to 1. Thus, we must have n2 ≥ 3.

• If n2 = 3, then to get the sum smaller than 1, we must have n3 > 6. The
smallest such value is n3 = 7 for which

1

2
+

1

3
+

1

7
=

41

42
= 0.976 . . .

By the way, for n3 = 8, we get

1

2
+

1

3
+

1

8
=

23

24
= 0.958 . . .

• If n2 = 4, then to get the sum smaller than 1, we must have n3 > 4. The
smallest such value is n3 = 5 for which

1

2
+

1

4
+

1

5
=

19

20
= 0.95.

This is smaller than the previous value, so the largest representable f
cannot be reached for this value of n2.

• If n2 ≥ 5, then we have n3 ≥ n2 ≥ 5, hence

1

n1
+

1

n2
+

1

n3
≤ 1

2
+

1

5
+

1

5
=

9

10
= 0.9,

which is also smaller than what we had for n2 = 3.
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If n1 = 3, then we can have n2 ≥ 3.

• If n2 = 3, then, to get the sum smaller than 1, we must have n3 > 3. The
smallest such value is n3 = 4 for which

1

3
+

1

3
+

1

4
=

11

12
= 0.916 . . . ;

this is smaller than what we had earlier;

• If n2 ≥ 4, then n3 ≥ 4, hence

1

n1
+

1

n2
+

1

n3
≤ 1

3
+

1

4
+

1

4
=

5

6
= 0.833...,

also smaller.

Finally, if we have n1 ≥ 4, then n2 ≥ 4, n3 ≥ 4, hence

1

n1
+

1

n2
+

1

n3
≤ 1

4
+

1

4
+

1

4
=

3

4
= 0.75,

still smaller.
So, the largest number representable as a sum of three Egyptian terms is

41

42
. Thus, every largest number has to be approximated by 1, so a3 cannot be

smaller than

1− 41

42
=

1

42
= 0.0238 . . .

Let us prove that can indeed approximate any value f ∈ (0, 1) with this
accuracy. Most of the numbers can be approximated with an even better accu-

racy
1

60
:

• values v ∈
(

0,
1

60

]
can be approximated by

1

60
;

• values v ∈
(

1

60
,

2

60

]
can be approximated by

2

60
=

1

30
;

• values v ∈
(

2

60
,

3

60

]
can be approximated by

3

60
=

1

20
;

• values v ∈
(

3

60
,

4

60

]
can be approximated by

4

60
=

1

15
;

• values v ∈
(

4

60
,

5

60

]
can be approximated by

5

60
=

1

12
;

• values v ∈
(

5

60
,

6

60

]
can be approximated by

6

60
=

1

10
;
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• values v ∈
(

6

60
,

7

60

]
can be approximated by

7

60
=

1

10
+

1

60
;

• values v ∈
(

7

60
,

8

60

]
can be approximated by

8

60
=

2

15
=

1

10
+

1

30
;

• values v ∈
(

8

60
,

9

60

]
can be approximated by

9

60
=

3

20
=

1

10
+

1

20
;

• values v ∈
(

9

60
,

10

60

]
can be approximated by

10

60
=

1

6
;

• values v ∈
(

10

60
,

11

60

]
can be approximated by

11

60
=

1

6
+

1

60
;

• values v ∈
(

11

60
,

12

60

]
can be approximated by

12

60
=

1

5
;

• values v ∈
(

12

60
,

13

60

]
can be approximated by

13

60
=

1

5
+

1

60
;

• values v ∈
(

13

60
,

14

60

]
can be approximated by

14

60
=

7

30
=

1

5
+

1

30
;

• values v ∈
(

14

60
,

15

60

]
can be approximated by

15

60
=

1

4
;

• values v ∈
(

15

60
,

16

60

]
can be approximated by

16

60
=

4

15
=

1

4
+

1

60
;

• values v ∈
(

16

60
,

17

60

]
can be approximated by

17

60
=

1

4
+

1

30
;

• values v ∈
(

17

60
,

18

60

]
can be approximated by

18

60
=

3

10
=

1

4
+

1

20
;

• values v ∈
(

18

60
,

19

60

]
can be approximated by

19

60
=

1

4
+

1

15
;

• values v ∈
(

19

60
,

20

60

]
can be approximated by

20

60
=

1

3
;

• values v ∈
(

20

60
,

21

60

]
can be approximated by

21

60
=

7

20
=

1

3
+

1

60
;

• values v ∈
(

21

60
,

22

60

]
can be approximated by

22

60
=

11

30
=

1

3
+

1

30
;

• values v ∈
(

22

60
,

23

60

]
can be approximated by

23

60
=

1

3
+

1

20
;
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• values v ∈
(

23

60
,

24

60

]
can be approximated by

24

60
=

2

5
=

1

3
+

1

15
;

• values v ∈
(

24

60
,

25

60

]
can be approximated by

25

60
=

5

12
=

1

5
+

1

12
;

• values v ∈
(

25

60
,

26

60

]
can be approximated by

26

60
=

13

30
=

1

3
+

1

10
;

• values v ∈
(

26

60
,

27

60

]
can be approximated by

27

60
=

9

20
=

1

4
+

1

5
;

• values v ∈
(

27

60
,

28

60

]
can be approximated by

28

60
=

7

15
=

1

3
+

1

10
+

1

30
;

• values v ∈
(

28

60
,

29

60

]
can be approximated by

29

60
=

1

3
+

1

10
+

1

20
;

• values v ∈
(

29

60
,

30

60

]
can be approximated by

30

60
=

1

2
;

• values v ∈
(

30

60
,

31

60

]
can be approximated by

31

60
=

1

2
+

1

60
;

• values v ∈
(

31

60
,

32

60

]
can be approximated by

32

60
=

8

15
=

1

2
+

1

30
;

• values v ∈
(

32

60
,

33

60

]
can be approximated by

33

60
=

11

20
=

1

2
+

1

20
;

• values v ∈
(

33

60
,

34

60

]
can be approximated by

34

60
=

17

30
=

1

2
+

1

15
;

• values v ∈
(

34

60
,

35

60

]
can be approximated by

35

60
=

7

12
=

1

2
+

1

12
;

• values v ∈
(

35

60
,

36

60

]
can be approximated by

36

60
=

3

5
=

1

2
+

1

10
;

• values v ∈
(

36

60
,

37

60

]
can be approximated by

37

60
=

1

2
+

1

10
+

1

60
;

• values v ∈
(

37

60
,

38

60

]
can be approximated by

38

60
=

19

30
=

1

2
+

1

10
+

1

30
;

• values v ∈
(

38

60
,

39

60

]
can be approximated by

39

60
=

13

20
=

1

2
+

1

10
+

1

20
;

• values v ∈
(

39

60
,

40

60

]
can be approximated by

40

60
=

2

3
=

1

2
+

1

6
;
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• values v ∈
(

40

60
,

41

60

]
can be approximated by

41

60
=

1

2
+

1

6
+

1

60
;

• values v ∈
(

41

60
,

42

60

]
can be approximated by

42

60
=

7

10
=

1

2
+

1

5
;

• values v ∈
(

42

60
,

43

60

]
can be approximated by

43

60
=

1

2
+

1

5
+

1

60
;

• values v ∈
(

43

60
,

44

60

]
can be approximated by

44

60
=

11

15
=

1

2
+

1

5
+

1

30
;

• values v ∈
(

44

60
,

45

60

]
can be approximated by

45

60
=

3

4
=

1

2
+

1

4
;

• values v ∈
(

45

60
,

46

60

]
can be approximated by

46

60
=

23

30
=

1

2
+

1

5
+

1

15
;

• values v ∈
(

46

60
,

47

60

]
can be approximated by

47

60
=

1

2
+

1

4
+

1

30
;

• values v ∈
(

47

60
,

48

60

]
can be approximated by

48

60
=

4

5
=

1

2
+

1

5
+

1

10
;

• values v ∈
(

48

60
,

49

60

]
can be approximated by

49

60
=

1

2
+

1

4
+

1

15
;

• values v ∈
(

49

60
,

50

60

]
can be approximated by

50

60
=

5

6
=

1

2
+

1

3
;

• values v ∈
(

50

60
,

51

60

]
can be approximated by

51

60
=

17

20
=

1

2
+

1

3
+

1

60
;

• values v ∈
(

51

60
,

52

60

]
can be approximated by

52

60
=

13

20
=

1

2
+

1

3
+

1

30
;

• values v ∈
(

52

60
,

53

60

]
can be approximated by

53

60
=

1

2
+

1

3
+

1

20
;

• values v ∈
(

53

60
,

54

60

]
can be approximated by

54

60
=

9

10
=

1

2
+

1

3
+

1

15
;

• values v ∈
(

54

60
,

55

60

]
can be approximated by

55

60
=

11

12
=

1

2
+

1

3
+

1

12
;

• values v ∈
(

55

60
,

56

60

]
can be approximated by

56

60
=

14

15
=

1

2
+

1

3
+

1

10
;

• values v ∈
(

56

60
,

57

60

]
can be approximated by

57

60
=

19

20
=

1

2
+

1

4
+

1

5
;
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• values v ∈
(

57

60
,

23

24

]
can be approximated by

23

24
=

1

2
+

1

3
+

1

8
;

• values v ∈
(

23

24
,

41

42

]
can be approximated by

41

42
=

1

2
+

1

3
+

1

7
;

• values v ∈
(

41

42
, 1

)
can be approximated by 1.

The proposition is proven.

3 Conclusion

Ancient Egyptians represented each fraction as a sum of inverses of integers,

e.g.,
5

6
was represented as

1

2
+

1

3
. In our previous paper, we showed that such

representations correspond to the optimal solution to a problem that is men-
tioned several times in Egyptian papyri: how to divide bread loaves between
workers. Egyptian fractions correspond to the smallest number of cuts needed
for this division.

Sometimes, however, the attempt to provide the exact amount of bread to
each worker leads to too many cuts. In many such cases, if we give every worker
a little bit more bread, we will spend more on bread but our overall expenses
will be lower, since we will need fewer cuts and thus, we will need to hire fewer
bread cutters. In this paper, we show how to find the solution that minimizes
the overall expenses. Depending on how many cuts per worker we allow, we can
make sure that the resulting portion of a loaf is close to the original one. For

example, if we allow 3 cuts, we can get the accuracy of
1

42
≈ 2.5%.
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