






Chapter 5

Conclusions and Future Work

5.1 Conclusion

• The main computational bottleneck in the SVL algorithm is calculating the grating

phase function Φ(~r) using the gradient equation.

∇Φ(~r) = ~K(~r)

This equation is solved by transforming the gradient equation into the matrix form

Ax = b, using the finite-difference method so that it can be solved numerically.

Direct methods such as LU or QR factorization are possible for small to moderate

size problems, but are not feasible for very large problems involving many millions

or billions of unknowns. Instead, iterative methods such as Conjugate Gradient

must be used.

• The parallel implementation of the SVL algorithm was completed using the Portable

Extensible Toolkit for Scientific Computation (PETSc) configured for complex num-

bers with a C programing language. PETSc was selected for implementing the par-

allel version for this project because it provides a large variety of matrix formats,

including dense and compressed sparse row storage, for sequential and parallel

applications. In our case, we used the sparse format matrix, since the matrices

built in the code are sparse. Also, it can be used on different computer systems

that have the necessary compiler plus libraries for the code.

• Having a faster and portable implementation of the SVL code will enable the sim-

102



ulation of the metamaterial device to be completed before construction. This is

important because it will help the code users to simulate their designs before con-

struction in a short time, helping the user to do the necessary modification on the

device before construction and obtain a most reliable product.

• We reduce the computational time by building a mask array KAMNP. The improve-

ment requires the Elimination of the Gratings According to their Amplitude by an-

alyzing the amplitudes of the truncated harmonic array ATruncated and selects the

highest spatial harmonics amplitudes that are above a threshold AMNPThreshold

and eliminates the ones that fall below the threshold.

• PETSC shows limited scalability on the implementation of the SVL algorithm be-

cause PETSc is limited by the memory bandwidth and network latency between

compute nodes. Also, PETSc is not thread-safe so only can be used with MPI-only

code. We expect that using a shared memory implementation would give better

performance and scalability.

5.2 Future Work

• The performance of this SVL code could be improved by implementing the follow-

ing improvements into the code:

– Storing the grating vector and eliminating every other grating vector that is

parallel.

– By the combination array multiplication of the two previous improvements.

• There are other parallel tools available that could be used to implement a het-

erogeneous version of the SVL algorithm. For example, a C library that enables

performance and portability across diverse and evolving multicore/manycore ar-

chitectures (GPUs, Multicore CPUs).
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• Results show that the SVL isoefficiency scaling cannot maintain the efficiency as

we scale up the problem size and the compute resources simultaneously. On the

other hand, the tables show that the SVL code increases its efficiency as the prob-

lem size increases. Considering a more significant problem could show improving

scalability.

• The lower values we get in the efficiency are due to the parallel overhead. We can

not account for all the overhead as interprocessor communication. We suspect that

memory pressure and contention are causing some of the overhead. We can try to

reduce that effect by improving the way the linear system is solved.

• The main goals of the future work are

– Improve the efficiency by reducing communication overhead,

– Improve scalability (as the problem size and number of processors grow),

– Show reliability (including error bounds) and portability (across all important

parallel machines),

– Explore use of accelerator plus special purpose hardware,

– Measure the FLOPs and data transfer to calculate the arithmetic intensity

of the SVL algorithm and develop performance optimization based on the

roofline model.
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