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Usually, measurement errors contain both absolute and relative components.

To correctly gauge the amount of measurement error for all possible values
of the measured quantity, it is important to separate these two error compo-

nents. For probabilistic uncertainty, this separation can be obtained by using

traditional probabilistic techniques. The problem is that in many practical sit-
uations, we do not know the probability distribution, we only know the upper

bound on the measurement error. In such situations of interval uncertainty,

separation of absolute and relative error components is not easy. In this paper,
we propose a technique for such a separation based on the maximum entropy
approach, and we provide feasible algorithms – both sequential and parallel –
for the resulting separation.

Keywords: absolute error, relative error, interval uncertainty, Maximum En-

tropy approach
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1. Need to Separate Absolute and Relative Error

Components: General Case

Measurement uncertainty: a brief reminder. Most information about

the world comes from measurements. Computers that process this infor-

mation treat all the numerical inputs as exact numbers, but, of course,

measurements are never 100% accurate. Each measurement result x̃ is, in

general, different from the actual (unknown) value x of the measured quan-

tity: in other words, the measurement error ∆x
def
= x̃ − x is, in general,

different from 0; see, e.g., Rabinovich9.

Because of this measurement uncertainty, the results of data processing

are also, in general, different from what we would get if we knew the exact

values of the corresponding quantities. To make adequate decisions based

on the results of data processing, we need to gauge this uncertainty. For

this, we need to know how accurate were the corresponding measurements.

How measurement uncertainty is usually described. Situations

change. As a result, in slightly different situations, when we use the same

measuring instrument several times to measure the same quantity, in gen-

eral, we get slightly different results. We cannot predict which result we will

get for each measurement. At best, what we can do is find the frequency

with which different measurement errors appear in such a measurement.

In other words, at best, we can determine, for each measured value x, the

probability distribution – as characterized, e.g., by the probability density

function (pdf) ρx that describes the probability of different values of the

measurement error ∆x: for each interval
[
δ, δ
]
, the probability that the

measurement error ∆x belongs to the interval is equal to∫ δ

δ

ρx(∆x) d∆x.

In many cases, the measurement error is the result of a joint action of the

large number of small independent factors. In such cases, the measurement

error is the sum of several independent variables of about the same size. It is

known – this is called the Central Limit Theorem – that the distribution of

such a sum is close to Gaussian; see, e.g., Sheskin10. Gaussian distributions

are indeed frequently observed in metrology; see, e.g., Rabinovich9.

In general, a Gaussian distribution is described by two parameters:

• its mean and

• its standard deviation σ.
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If the mean is different from 0 – i.e., if we have a bias – then we can simply

re-calibrate this measurement instrument by subtracting this bias from all

the measurement results. Thus, we can safely assume that the bias is 0, and

that the only characteristic describing the measurement error of measuring

the quantity x is the standard deviation σ(x).

Case of interval uncertainty. To find (and compensate for) the bias and

to find the standard deviation σ(x), we need several times to compare:

• the results of a measurement performed by the analyzed measuring

instrument and

• the results of measuring the same quantity with a much more ac-

curate (“standard”) measuring instrument.

Such standard instruments are expensive. Thus, determining the mean

and standard deviation is usually a very expensive and time-consuming

procedure. Because of this, in many practical situations, this procedure is

not performed. In such situations, the only information that we have about

the measurement error ∆x is the upper bound ∆(x) on its absolute value:

|∆x| = |x̃− x| ≤ ∆(x). (1)

This upper bound has to be provided by the manufacturer of the mea-

suring instrument. Indeed, if no such upper bound is provided, then, based

on the measurement results, we cannot say anything at all about the actual

value, it can be arbitrarily large or it can be arbitrarily small. In other

words, this would be a wild guess, not a measurement.

The upper bound is obtained by the manufacturer of the measuring in-

strument by analyzing the whole bunch of similar mass-produced measuring

instruments, with different biases and different values of other characteris-

tics. This is a much cheaper and much less time-consuming process than

individual calibration of each individual measuring instrument – which is

needed for the probability uncertainty description. The use of this process

allows the manufacturer to produce relatively cheap and affordable sensors

and other measuring instruments.

In this case, once we know the measurement result x̃, what can we

conclude about the measurement error? The dependence of ∆(x) on x

is usually smooth: relatively small changes of x lead to relatively small

changes in ∆(x). Measurements are usually reasonably accurate, so the

measurement result x̃ is very close to the actual value x. Thus, the value

∆(x) is very close to the value ∆(x̃). The relative difference
∆(x̃)−∆(x)

∆(x)
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between these two bounds is proportional to the relative difference
x̃− x
x

=

∆x

x
. Thus, the absolute difference between these two bounds is of the order

(∆(x))2 – quadratic in terms of ∆(x):

∆(x̃)−∆(x) =
∆(x̃)−∆(x)

∆(x)
·∆(x) ∼ ∆x

x
·∆(x) ∼

∆(x)

x
·∆(x) =

1

x
· (∆(x))2.

Thus, this difference is much smaller than ∆(x). So, from the practical

viewpoint, this difference can be safely ignored. For example, if the upper

bound on the absolute value of the measurement error is 5%, then its square

is 0.25%, and is indeed negligible in comparison.

Since, from the practical viewpoint, we have ∆(x̃) ≈ ∆(x), the in-

equality (1) takes the form |x̃ − x| ≤ ∆(x̃). Thus, once we know the

measurement result x̃, the only information that we gain about the actual

(unknown) value x of the measured quantity is that this value must satisfy

the inequality

x̃−∆(x̃) ≤ x ≤ x̃+ ∆(x̃), (2)

i.e., that this value x is in the interval [x̃−∆(x̃), x̃+ ∆(x̃)]. Because of

this, situations when we only know the upper bounds on the measurement

errors are known as situations of interval uncertainty; see, e.g., Jaulin et

al.2, Moore et al.6, and Mayer5.

Need for extrapolation and interpolation. In practice, during any

time interval, we can only perform a finite number of tests. In these tests,

we estimate the values σ(xi) or ∆(xi) for finitely many different values

x1 < x2 < . . . < xn.

In practice, we will encounter other values of the quantity x. We therefore

need to extrapolate and/or interpolate the estimates σ(xi) or ∆(xi) to other

values of the quantity x.

How to extrapolate and interpolate. The dependence of σ(x) and

∆(x) on the corresponding value x is usually smooth. Thus, a natural idea

is to expand this dependence in Taylor series and keep only a few first

terms in this expansion. As a result, the dependence σ(x) or ∆(x) becomes

a polynomial. So:
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• we can estimate the coefficients of this polynomial based on the

known values σ(xi) or ∆(xi), and then

• we can use the resulting polynomial formula to estimate the corre-

sponding metrological characteristic σ(x) or ∆(x) for all x.

Absolute and relative error components. The simplest polynomial is

a linear function. In the vicinity of each value, each smooth function can

be reasonably well approximated by a linear function; see, e.g., Feynman

et al.1. So, for some reasonable-size range, can safely use linear expressions

σ(x) = a+ b · x and ∆(x) = a+ b · x.

What is meaning of the two terms in this expansion?

• When we have only the constant term, i.e., when b = 0, the corre-

sponding characteristic of the measurement error is absolute in the

sense that it does not change – it is the same for all the values of

the measured quantity x. This error component is therefore known

as the absolute error component.

• When we only have the linear term, i.e., when a = 0, then the

absolute value of the measurement-error characteristic changes, but

the relative error
σ(x)

x
or

∆(x)

x
remains constant. This component

is thus called a relative error component.

Comment. The possibility of a linear approximation assumes a relatively

limited range of values x. What can we do in situations when this linearity

assumption does not hold for the whole range of possible values of x¿

• A first natural idea is to divide the range into sub-ranges on each

of which we can approximate σ(x) and/or ∆(x) by a linear func-

tion. For each of these sub-ranges, we can then apply the linear-

approximation algorithm described in the following text.

• Alternatively, we can consider quadratic (or higher order) depen-

dence of σ(x) or ∆(x) on x. In this case, we need to modify our

algorithm; the main idea behind this modification is described as

a comment in the section where this algorithm is described.

Need to separate absolute and relative error components. It is

therefore desirable to estimate the coefficients of the above linear depen-

dence based on the known values σ(xi) or ∆(xi). In other words, we need

to separate the overall measurement errors into absolute and relative error

components.
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Comment. In general, the larger the value of the measured quantity, the

larger the measurement error. However, we do not want to exclude the

opposite situations, when larger values of the quantity can be measured

with higher accuracy – and thus, with smaller measurement errors. In such

situations, the corresponding coefficient b is negative.

2. How to Separate Absolute and Relative Error

Components: Probabilistic Case

Towards a formal description of the problem. Suppose that we have

several situations i with, in general, different values of the quantity of in-

terest x – e.g., if we measure mass, we have several objects with different

masses. Let xi denote the true (unknown) value of the quantity x in situ-

ation i.

For each situation i, we perform several (si) measurements and get

several values x̃ik, k = 1, 2, . . . , si. In line with the above description, we

assume that all the measurement errors are normally distributed with mean

0 and standard deviation a+ b · xi, for some unknown values xi, a, and b,

and that measurement errors corresponding to different measurements are

independent.

In this case, each value ∆xik = x̃ik − xi of the measurement error is

normally distributed with mean 0 and standard deviation a+ b · xi. Thus,

the corresponding probability density has the form

1√
2π · (a+ b · xi)

· exp

(
− (x̃ik − xi)2

2(a+ b · xi)2

)
.

Since all measurement errors are independent, the overall probability den-

sity is equal to the product of these expressions:

∏
i

si∏
k=1

1√
2π · (a+ b · xi)

· exp

(
− (x̃ik − xi)2

2(a+ b · xi)2

)
. (3)

A natural idea to select the values of the corresponding parameters xi, a,

and b which is the most probable, i.e., for which the corresponding proba-

bility (3) is the largest possible. This is known as the Maximum Likelihood

Method; see, e.g., Sheskin10. Thus, we arrive at the following solution.

Solution. Based on the measurement results x̃ik, we find the values xi, a,

and b that maximize the expression (3).
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3. How to Separate Absolute and Relative Error

Components in the Interval Case: Analysis of the

Problem

Towards a precise formulation of the problem: what we want and

what we have. We want to find the expression ∆(x) = a + b · x that

describes the desired upper bounds on the measurement error for all the

values x from some range [x, x].

To find this expression, we can use the values ∆(xi) provided for several

values x < x1 < x2 < . . . < xn < x of the measured quantity x.

Important conditions. We want to make sure that we do not underesti-

mate the measurement errors. So, for all i, we must have

∆(xi) ≤ a+ b · xi. (4)

Another constraint is that the value ∆(x) = a + b · x must be non-

negative for all values x from the interval [x, x]. It is easy to see that this

condition is equivalent to requiring that this value is non-negative at the

two endpoints of this interval, i.e., that we have:

0 ≤ a+ b · x (5)

and

0 ≤ a+ b · x. (6)

These conditions are not sufficient. These conditions are necessary,

but not sufficient to determine the desired values a and b. Indeed, if we

have some values a and b that satisfy inequalities (4)–(6), and we increase

the value a, then all these inequalities will still be preserved.

So, we need to have a criterion that would allow us to select one pair of

the values a and b from all the pairs that satisfy the above inequalities.

Idea: use Maximum Entropy Approach. In general, when we make a

selection, we decrease the uncertainty of the situation: instead of all possible

dependencies ∆(x) which are consistent with the known values ∆(xi), we

select one specific dependence. A natural idea is to not invent certainty

where there is none, i.e., to select an alternative that maximally preserves

the original uncertainty.

In the statistical approach, uncertainty of the probability distribution

with the probability density ρ(x) is naturally measured by entropy

S = −
∫
ρ(x) · ln(ρ(x)) dx,
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which is proportional to the smallest average number of binary (yes-no)

questions that we need to ask to determine the value of the random variable

with given accuracy; see, e.g., Jaynes & Bretthorst3 and Nguyen at al.7.

So, the above natural idea leads to maximum entropy approach – when

from all possible distributions, we select the one with the largest entropy.

Interval uncertainty corresponds to a class of distributions – namely,

the class of all the distributions located on the given interval. The average

number of binary questions depends on the distribution. In this case, a

natural measure of uncertainty is the largest possible average number of

questions – i.e., largest possible entropy of all the distributions from this

class. We will call this value the entropy of the given class of probability

distributions.

Thus, a reasonable idea is to select the values a and b for which thus

defined entropy is the closest to the original entropy value.

From the idea to the exact optimization criterion. What is the

entropy in the interval case?

We consider n measurements corresponding to n different values

x1, . . . , xn. To provide a full description of each combination of measure-

ment outcomes, we need to describe n corresponding measurement errors

∆xi. Thus, to get a complete description of measurement accuracy, we

need to provide a probability distribution of the set of the corresponding

tuples (∆x1, . . . ,∆xn).

Originally, for each i, the only information that we have about each

measurement error ∆xi is that it belongs to the interval [−∆(xi),∆(xi)].

Thus, the set of all possible values of the tuple is the box

B = [−∆(x1),∆(x1)]× . . .× [−∆(xi),∆(xi)]× . . .× [−∆(xn),∆(xn)].

So, we need to consider the class of all possible probability distributions on

this box.

The entropy of this class, as we have mentioned earlier, can be described

as the largest possible entropy of all the distributions located on this box. It

is known (see, e.g., Jaynes & Bretthorst3) that this largest value is attained

when we consider the uniform distribution on this box, with the constant

probability density ρ(x) = const. This constant can be determined from

the condition that the overall probability be equal to 1:
∫
ρ(x) dx = 1. For

the constant, this implies that ρ · V = 1, where V denotes the volume of

the box. Thus, the probability density is equal to ρ =
1

V
. So, the entropy
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takes the form

S = −
∫
ρ(x) · ln(ρ(x)) dx = −

∫
1

V
· ln
(

1

V

)
dx =

−V · 1

V
· ln
(

1

V

)
= − ln

(
1

V

)
.

Since the logarithm of the ratio is equal to the difference between loga-

rithms, we conclude that

ln

(
1

V

)
= ln(1)− ln(V ) = − ln(V ),

thus S = ln(V ).

The volume of the box is equal to the product of the lengths 2∆(xi) of

its sides:

V =

n∏
i=1

(2∆(xi)) = 2n ·
n∏
i=1

∆(xi).

The logarithm of the product is equal to the sum of the logarithms, so we

conclude that the original entropy is equal to

S = ln(V ) = n · ln(2) +

n∑
i=1

ln(∆(xi)).

When we replace each value ∆(xi) with a linear expression a+ b ·xi, we

similarly get the values

V ′ =

n∏
i=1

(2(a+ b) · xi) = 2n ·
n∏
i=1

(a+ b · xi), (7)

and

S′ = ln(V ′) = n · ln(2) +

n∑
i=1

ln(a+ b · xi). (8)

We want to find the values a and b for which the entropy S′ is the closest

to the original entropy S.

For each i, due to inequality (4), we have 0 ≤ ∆(xi) ≤ a + b · xi, so

the product V of the left-hand sides is always smaller than or equal to the

product V ′ of the right-hand sides. Thus, we always have

S = ln(V ) ≤ S′ = ln(V ′).

So, selecting the value S′ which is the closest to S means selecting the

smallest possible value S′.
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Adding a constant n · ln(2) to all the values of the entropy does not

change which value is larger. Thus, finding the values a and b that minimize

the entropy S′ is equivalent to finding the values ∆i for which the sum

s
def
=

n∑
i=1

ln(a+ b · xi) (9)

attains the smallest possible value.

So, we arrive at the following exact formulation of the problem.

Formulation of the problem in precise terms.

• Given:

– values x < x1 < x2 < . . . < xn < x and

– values ∆(x1), . . . ,∆(xn).

• What we want to compute: Among all the pairs of values a and

b that satisfy the inequalities (4)–(6), we need to find the values

a and b for which the expression (9) attains the smallest possible

value.

Towards the algorithm. First, to somewhat simplify the formulation of

the problem, let us notice that the conditions (5) and (6) can be formulated

in the form (4).

• For the condition (5), it is sufficient to take x0 = x and ∆(x0) = 0.

• For the condition (6), it is sufficient to take xn+1 = x and

∆(xn+1) = 0.

So, instead of the conditions (4)–(6), we can consider the condition (4) for

i = 0, 1, . . . , n, n+ 1.

Second, let us take into account that since we have constraints of the

non-strict inequality type, then for the minimizing pair of a and b, some

inequalities will be equalities and some strict inequalities.

When at least two inequalities become strict equalities, e.g., equalities

j and k, i.e., when a + b · xj = ∆(xj) and a + b · xk = ∆(xk), then we

have two linear equations for the two unknowns a and b. From these two

equations, we can find the values of both unknowns:

b =
∆(xk)−∆(xj)

xk − xj
(10)

and

a =
xk ·∆(xj)− xj ·∆(xk)

xk − xj
. (11)



November 24, 2020 10:21 ws-procs9x6-9x6 WSPC Proceedings - 9in x 6in tr20-101a page 11

11

The objective function (9) is smooth. Thus, if none of the inequalities

(4) are equalities (or if only one inequality is an equality), then the value

of the objective function is a (local or global) minimum of the objective

function (or a local or global minimum under a single constraint). In both

cases, this minimum is minus infinity – corresponding to the case when one

of the values a + b · xi is 0 and thus, its logarithm is equal s = −∞. This

cannot be the solution to our problem since, due to inequalities (4), we

have ln(∆(xi)) ≤ ln(a+ b ·xi) hence
n∑
i=1

ln(∆(xi)) ≤ s. Here, ∆(xi) > 0 for

all i, so −∞ < ln(∆(xi)) and −∞ < s.

Thus, at least two inequalities (4) must be equalities. Hence, the mini-

mizing values a and b are determined by the formulas (10) and (11) corre-

sponding to some indices j and k. So, we arrive at the following algorithm

that always solves the above problem.

4. How to Separate Absolute and Relative Error

Components in the Interval Case: Algorithm

Formulation of the problem: reminder. We are given:

• the values x < x1 < x2 < . . . < xn < x and

• the values ∆(x1), . . . ,∆(xn).

What we want: among all the pairs (a, b) that satisfy the following inequal-

ities:

∆(xi) ≤ a+ b · xi (4)

for all i = 1, . . . , n,

0 ≤ a+ b · x, (5)

and

0 ≤ a+ b · x, (6)

we want to find the pair (a, b) for which the expression

s =

n∑
i=1

ln(a+ b · xi) (9)

attains the smallest possible value.

Algorithm. To find the desired values a and b, we do the following:

• First, we compute x0 = x, xn+1 = x, and ∆(x0) = ∆(xn+1) = 0.
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• Then, for each pair of indices 0 ≤ j < k ≤ n+ 1:

– First, we use the formulas

b =
∆(xk)−∆(xj)

xk − xj
(10)

and

a =
xk ·∆(xj)− xj ·∆(xk)

xk − xj
. (11)

to compute the corresponding values a and b.

– Then, we check whether for the resulting values a and b, the

inequality (4) is satisfied for all i = 0, 1, . . . , n+ 1.

– If the inequality (4) is satisfied for all i, then we compute the

value (9).

• We then compare all the resulting values of the expression (9) and

return the values a and b for which the expression (9) attains its

smallest possible value.

Comment. In geometric terms, for each pair j < k, we draw a straight

line a+ b ·x through the points (xj ,∆(xj)) and (xk,∆(xk)) and select only

those pairs for which all other points (xi,∆(xi)) are located beneath or on

this line.

This algorithm is feasible. For each of O(n2) pairs (j, k):

• we check O(n) inequalities;

• if inequalities are satisfied, we compute the sum (9) of n numbers;

• then, we compare the sum (9) with largest-sum-so-far, and if the

new sum is larger, replace the largest-so-far with this sum.

So, for each of O(n2) pairs, we need O(n) computational steps, to the

total of O(n2) × O(n) = O(n3). Cubic-time algorithms are feasible (see,

e.g., Papadimitriou8 and Kreinovich at al.4), so we indeed have a feasible

algorithm.

This algorithm is parallelizable. If we have an unlimited number of

processors, then operations corresponding to each pair (j, k) can be per-

formed on a separate group of processors. For each group, checking all

inequalities can be done in parallel by n + 2 processors in one step. So,

overall, we need O(n2) ·O(n) = O(n3) processors.

Computing the sum can be done, as usual: in one step we add pairs of

values, then add sums of pairs into sums of 4 values, etc. At the end, in
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O(log(n)) steps, we compute the sum. Thus, the overall time for processing

each pair in parallel is O(log(n)).

Now, we have O(n2) values, we need to find the smallest of these values.

This can also done in O(log(n2)) = O(log(n)) steps: first, we find the

minimum of pairs, then minima of groups of 4, etc. So overall, we need

O(log2(n)) time on O(n3) processors. The fact that this problem can be

solved in polylog (even log) time on polynomial number of processors means

that our problem belongs to the class NC of parallelizable problems; see,

e.g., Papadimitriou8.

Comment. In this paper, we concentrated on the case when we approx-

imate the dependence ∆(x) by a linear functions – i.e., by the first two

terms in the Taylor expression. Similar ideas and algorithms can be used

if we approximate it by a quadratic, cubic, and other fragments of the

Taylor series. In this case, instead of pairs (j, k), we will have to consider

triples, quadruples, etc. The algorithm will be more time-consuming but

still feasible.

5. Numerical Example

Description of the situation. Let us assume that the quantity x takes

values from the interval [x, x] = [0, 4], and that the actual (unknown) de-

pendence of the upper bound ∆(x) on the measurement error on x has

the form ∆act(x) = 1 + x, i.e. the form ∆act(x) = aact + bact · x with

aact = bact = 1. This means, in particular, that for three values x1 = 1,

x2 = 2, and x3 = 3, we have ∆act(1) = 1, ∆act(2) = 3, and ∆act(3) = 4.

Suppose that the manufacturer of the measuring instrument provides

slightly larger bounds on the measurement errors: ∆(x1) = 2.1, ∆(x2) =

3.1, and ∆(x3) = 4.2.

Resulting input. In this case, we have n = 3,

x = 0 < x1 = 1 < x2 = 2 < x3 = 2 < x = 4,

and

∆(x1) = 2.1, ∆(x2) = 3.1, ∆(x3) = 4.2.

Let us apply the algorithm. Following the algorithm, we first compute

the values

x0 = x = 0, x4 = x = 4, ∆(x0) = ∆(x4) = 0.
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Then, as we have mentioned in the previous section, in geometric terms,

for each pair j < k, we draw a straight line a + b · x through the points

(xj ,∆(xj)) and (xk,∆(xk)) and select only those pairs for which all other

points (xi,∆(xi)) are located beneath or on this line.

Let us consider all pairs j < k; we will consider them in lexicographic

order.

• For j = 0 and k = 1, we get the line a + b · x = 2.1 · x, for which

a+ b · x1 = 2.1, a+ b · x2 = 4.2, a+ b · x3 = 6.3. The inequality (4)

is satisfied for all i. Thus, we compute the expression (9). In our

case, this expression has the form

s = ln(2.1) + ln(4.2) + ln(6.3) = ln(2.1 · 4.2 · 6.3) = ln(55.566).

• For j = 0 and k = 2, we get the line a+ b ·x = 1.55 ·x. For x1 = 1,

we have

∆(x1) = 2.1 > a+ b · x1 = 1.55,

so the inequality (4) is violated for i = 1. The pair (j.k) = (0, 2) is

therefore dismissed.

• Similarly, for j = 0 and k = 3, we get the line a+ b · x = 1.4 · x, so

the inequality (4) is also violated for x1 = 1.

• For j = 0 and k = 4, we get the line a+ b · x = 0, so the inequality

(4) is violated for x1.

• For j = 1 and k = 2, we get a+ b · x = 1.1 + x. Here,

∆(x3) = 4.2 > a+ b · x3 = 4.1,

so this pair is also dismissed.

• For j = 1 and k = 3, we get a+b ·x = 1.05+1.05 ·x. The inequality

(4) holds for all i, and

s = ln(2.05 · 3.15 · 4.2) = ln(27.1215).

• For j = 1 and k = 4, the line a+ b · x decreases and thus, does not

cover the points (x2,∆(x2)) and (x3,∆(x3)). This pair is dismissed.

• For j = 2 and k = 3, we get a+ b · x = 0.9 + 1.1 · x. Here,

∆(x1) = 2.1 > a+ b · x1 = 2.0,

so this pair is also dismissed.

• For j = 2 and k = 4, the line a+ b · x decreases and thus, does not

cover the point (x3,∆(x3)). This pair is dismissed
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• Finally, for j = 3 and k = 4, we get a+ b · x = 16.8− 4.2 · x. Here,

the inequality (4) is satisfied for all i, and

s = ln(12.6 · 8.4 · 4.2) = ln(476.28).

We are left with three pairs (j, k) = (0, 1), (j, k) = (1, 3), and (j, k) = (3, 4).

The value s is the smallest for the pair (j, k) = (1, 3), so we conclude

that

a = b = 1.05.

This result is reasonable. The values a and b that we obtained are

indeed close to the actual values aact = bact = 1.
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