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When precise measurement instruments are designed, designers try their best

to decrease the effect of the main factors leading to measurement errors. As a

result of this decrease, the remaining measurement error is the joint result of a
large number of relatively small independent error components. According to

the Central Limit Theorem, under reasonable conditions, when the number of

components increases, the resulting distribution tends to Gaussian (normal).
Thus, in practice, when the number of components is large, the distribution
is close to normal – and normal distributions are indeed ubiquitous in mea-

surements. However, in some practical situations, the distribution is different
from Gaussian. How can we describe such distributions? In general, the more

parameters we use, the more accurately we can describe a distribution. The

class of Gaussian distributions is 2-dimensional, in the sense that each distribu-
tion from this family can be uniquely determined by 2 parameters: e.g., mean
and standard deviations. Thus, when the approximation of the measurement
error by a normal distribution is insufficiently accurate, a natural idea is to
consider families with more parameters. What are 3-, 4-, 5-, n-dimensional
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limit families of this type? Researchers have considered 3-dimensional classes
of distributions, which can – under weaker assumptions – be used to describe

similar limit cases; distributions from these families are known as infinitely di-

visible ones. A natural next question is to describe all possible n-dimensional
families for all n. Such a description is provided in this paper.

Keywords: measurement error, Central Limit Theorem, infinitely divisible dis-

tributions

1. Central Limit Theorem and Distributions of

Measurement Error: A Brief Reminder and Formulation

of the Problem

Specifics of precise measuring instruments: main idea. Measure-

ments are never absolutely accurate: the measurement result x̃ is, in gen-

eral, different from the actual (unknown) value x of the measured quantity;

see, e.g., Novitskii and Zograph1, Orlov2, and Rabinovich3.

For most measurement instruments, we can usually identify several main

factors that contribute to this measurement error. For many instruments,

these factors include thermal noise, interference of nearby electric lines,

etc. To increase the measurement accuracy, we need to decrease the effect

of these factors. For example:

• to decrease the effect of thermal noise, we need to cool down the

measuring instrument;

• to decrease the effect of electric lines, we can place the instrument

in a conducting box, etc.

As a result of this thorough decrease, all major factor affecting measure-

ment uncertainty have been decreased. Thus, the remaining measurement

error is the joint effect of many small independent error components.

This idea can help describe the probability distribution of mea-

surement errors. Interestingly, the above seemingly qualitative idea can

help us describe, in quantitative terms, the probability distribution of the

corresponding measurement errors.

Specifically, in many cases, there are theorems – they are called limit

theorems – that state that when the number of components increases, the

distribution of the sum of that many independent components tends to

distributions from a certain family. Thus, in practice, when the number

of components is large, the actual distribution of the measurement error is

close to the corresponding limit distribution.
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Central Limit Theorem. Historically the first – and most well-known

– limit theorem is the Central Limit Theorem that states that under some

reasonable conditions, the sum of many similar-size independent random

variables tends to Gaussian (normal) distribution; see, e.g., Sheskin4. So,

under these conditions, the distribution of the resulting measurement error

is close to Gaussian; see, e.g., Rabinovich3.

For many measuring instruments, the distribution of the measurement

error is indeed close to Gaussian.

Need for limit theorems beyond Central Limit Theorem. For some

measuring instruments, however, the distribution of the measurement error

is different from Gaussian – and even when it is close to Gaussian, it is not

exactly equal to Gaussian. To describe such distributions, we need to go

beyond normal distributions.

How can we do that? The more parameters we use – i.e., in other words,

the higher the dimension of the corresponding family – the more accurately

we can describe the corresponding distributions. A general Gaussian dis-

tribution can be described by two parameters: mean µ and standard devi-

ation. A natural idea is thus to consider more general – e.g., 3-parametric

– families of distributions.

First natural property of the class of limit distributions: close-

ness under addition. Suppose that we have two different families of

independent small random variables:

• the first one tends to a random variable X, and

• the second one tends to the random variable Y .

Then, when we combine variables from both families, the resulting limit

random variable is simply equal to the sum X +Y of the two limit random

variables. So, the probability distribution corresponding to this sum can

also appear in the limit.

Thus, the desired family of limit probability distributions must satisfy

the following property:

• if X and Y are independent random variables from this family,

• then their sum X + Y also belongs to this same family.

This property can be easily described in terms of the distribution’s char-

acteristic function χX(ω)
def
= E[exp(i ·ω ·X)], where X is the corresponding

random variable, i
def
=
√
−1, and E[Z] denotes the expected value of the
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random variable Z. Indeed, here

exp(i · ω · (X + Y )) = exp(i · ω ·X) · exp(i · ω · Y ), (1)

thus the expected values of both sides are also equal:

E[exp(i · ω · (X + Y ))] = E[exp(i · ω ·X) · exp(i · ω · Y )]. (2)

Since the variables X and Y are independent, the variables exp(i · ω · X)

and exp(i · ω · Y ) are also independent. Hence, the expected value of their

product is equal to the product of their expected values, so

E[exp(i · ω · (X + Y ))] = E[exp(i · ω ·X)] · E[exp(i · ω · Y )], (3)

i.e., indeed

χX+Y (ω) = χX(ω) · χY (ω). (4)

Thus, in terms of the characteristic function, the above property takes a

very simple form: the family of the characteristic functions must be closed

under multiplication.

Examples. This property is definitely true for the characteristic functions

of the normal distribution χ(ω) = exp(i · µ · ω − σ2 · ω2/2). Indeed:

• if we have two independent normally distributed random variables

X1 and X2 with means µi and variances Vi = σ2
i ,

• then, as one can easily check, the product of their characteristic

functions

χ1(ω) = exp(i · µ1 · ω − V2 · ω2/2) (5)

and

χ2(ω) = exp(i · µ2 · ω − V2 · ω2/2) (6)

also had the same form

χ(ω) = exp(i · µ · ω − V · ω2/2), (7)

with µ = µ1 + µ2 and V = V1 + V2.

In general, this property is similarly satisfied for families of the type

χ(ω) = exp(C1 · f1(ω) + . . .+ Cn · fn(ω)), (8)

where the functions fi(ω) are fixed, but the parameters Ci can take any

value. Indeed:
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• if we have two distributions X1 and X2 from such a family, with

characteristic functions

χ1(ω) = exp(C11 · f1(ω) + . . .+ C1n · fn(ω)) (9)

and

χ2(ω) = exp(C21 · f1(ω) + . . .+ C2n · fn(ω)), (10)

• then the characteristic sum of the sum X1 +X2 has a similar char-

acteristic function

χ(ω) = exp(C1 · f1(ω) + . . .+ Cn · fn(ω)), (11)

with Ci = C1i + C2i.

Comment. It is sufficient to describe the values of the characteristic function

only for ω > 0. Indeed, for ω < 0, we have

exp(i · ω ·X) = exp(−i · |ω| ·X) = [exp(i · |ω| ·X)]∗, (12)

where for each complex number z = a + i · b, the notation z∗
def
= a − i · b

denotes its complex conjugate. By taking the expected value of both sides,

we conclude that for ω < 0, we have

χ(ω) = [χ(|ω|)]∗. (13)

Thus, it is indeed sufficient to consider the values of the characteristic

function only for ω > 0.

Towards other natural properties. Other properties of the limit family

are related to the fact that numerical values of a physical quantity depend:

• on the choice of a measuring unit and,

• (for many quantities like time or temperature) on the selection of

the starting point.

Scale-invariance.

• If we replace the original measuring unit by a new unit which is λ

times smaller,

• then all the numerical values of this quantity are multiplied by λ.

Comment. This idea is well-known in metrology: it is, e.g., an important

feature to the so-called interval scales; see, e.g., Rabinovich3.
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Scale-invariance (cont-d). In particular, if we replace the original mea-

suring unit by a new unit which is λ times smaller, then, instead of the

original random variable X, we get the random variable X ′ = λ ·X. In the

new units, the characteristic function has the form

χλ(ω) = E[exp(i · ω ·X ′)] = E[exp(i · ω · (λ ·X))] =

E[exp(i · (ω · λ) ·X)] = χ(λ · ω). (14)

We are interested in the universally applicable limit family of distribu-

tions, a family that should not depend on the choice of the measuring unit.

Thus, we should require that:

• if a function χ(ω) belongs to the limit family,

• then, for every λ > 0, the function χλ(ω) = χ(λ · ω) should also

belong to this family.

This property is called scale-invariance.

Comment. One can easily see that the family of characteristic functions

corresponding to normal distributions has this property. Indeed:

• if we have a characteristic function

χ(ω) = exp(i · µ · ω − V · ω2/2) (15)

corresponding to normal distribution,

• then, for each λ > 0, we have

χλ(ω) = χ(λ · ω) = exp(i · µ · λ · ω − V · λ2 · ω2/2) =

exp(i · µλ · ω − Vλ · ω2/2), (16)

where we denoted µλ
def
= λ · µ and Vλ

def
= λ2 · V .

Shift-invariance.

• If we replace the original starting point with a new one which is x0
units smaller,

• then to all numerical values, we add x0.

In particular, instead of the original random variable X, we get the random

variable X ′ = X +x0. In the new units, the characteristic function has the

form

χx0
(ω) = E[exp(i · ω ·X ′)] = E[exp(i · ω · (X + x0))] =
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exp(i · ω · x0) · E[exp(i · ω ·X)] = exp(i · ω · x0) · χ(ω). (17)

We are interested in the universally applicable limit family of distribu-

tions, a family that should not depend on the choice of the starting point.

Thus, we should require that:

• if a function χ(ω) belongs to the limit family,

• then, for every x0, the function χx0(ω) = exp(i ·ω ·x0) ·χ(ω) should

also belong to this family.

This property is called shift-invariance.

Comment. One can easily see that the family of characteristic functions

corresponding to normal distributions has this property. Indeed:

• if we have a characteristic function

χ(ω) = exp(i · µ · ω − V · ω2/2) (18)

corresponding to normal distribution,

• then, for each x0, we have

χx0
(ω) = exp(i · ω · x0) · exp(i · µ · ω − V · ω2/2) =

exp(i · (µ+ x0) · ω − V · ω2/2), (19)

i.e., the same form with µ+ x0 instead of µ.

What is known: infinitely divisible distributions. For each positive

real number a, there is a family of distributions that satisfy all three above-

described properties. For ω > 0, the corresponding characteristic functions

have the form χ(ω) = exp(i ·ω ·x0 +c ·ωa) for a complex value c = cr+i ·ci.
Distributions described by these formulas are known as infinitely divis-

ible.

Comment. It should be mentioned that normal distributions are a partic-

ular case of this family corresponding to a = 2 and ci = 0.

Remaining problem. Distributions from the 3-parametric family of in-

finitely divisible distributions – defined by the above types of character-

istics functions – do not always provide a precise description of how the

measurement errors are distributed; see, e.g., a detailed empitical analysis

in Novitskii and Zograph1 and in Orlov2. A natural idea is thus to try

4-parametric, 5-parametric, etc. families.
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A natural question is: which n-parametric families satisfy the three

above-described properties?

What we do in this paper. In this paper, we provide a full description

of all the families of this type.

2. Definition and the Main Result

Analysis of the problem. We are looking for families of characteristic

functions of the type

χ(ω) = exp(C1 · f1(ω) + . . .+ Cn · fn(ω)), (20)

where functions fi(ω) are fixed, and the parameters Ci can take any value.

It is reasonable to assume that the functions fi(ω) are smooth for ω > 0.

We want to find families which are scale- and shift-invariant. So, we

arrive at the following definition:

Definition 1. By a limit family we mean the family F of the functions

(20) – corresponding to some functions differentiable fi(ω), which satisfies

the following two properties:

• if a function χ(ω) belongs to the family F , then, for every λ > 0,

the function χ(λ · ω) also belongs to the family F ; and

• if a function χ(ω) belongs to the family F , then, for every x0, the

function exp(i · ω · x0) · χ(ω) also belongs to the family F .

Proposition 1. For each limit family, each function χ(ω) from this family

has the form exp(`(ω)), where `(ω) is a linear combination of the functions

(ln(ω))k · ωa for some non-negative integer k and some complex value a.

Comment. For k = 0 and real a, we get the characteristic functions of the

normal distribution and of the infinitely divisible distributions.

Proof. Instead of the characteristic functions of the type (20), it is conve-

nient to consider their logarithms

`(ω) = ln(χ(ω)) = C1 · f1(ω) + . . .+ Cn · fn(ω). (21)

Let us denote the class of all the logarithms corresponding to all the char-

acteristic functions from the class F by L. By S, let us denote the set of

all linear combinations of functions from the set L.

In terms of these logarithms, the scale-invariance property has the sim-

ilar form:
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• if a function `(ω) belongs to the family L

• then the re-scaled function `(λ · ω) should also belong to the fam-

ily L.

From this, we can conclude that:

• if a function `(ω) belongs to the family S

• then the re-scaled function `(λ · ω) should also belong to the fam-

ily S.

In particular, since each function fi(ω) belongs to the family S, the re-scaled

function fi(λ · ω) also belongs to the family S, i.e., has the form

fi(λ · ω) = Ci1(λ) · f1(ω) + . . .+ Cin(λ) · fn(ω), (22)

for some coefficients Cij which are, in general, depending on λ.

Let us fix i and fix λ and consider n different values of ω:

ω1, . . . , ωj , . . . , ωn. (23)

Then, we have n linear equations for n unknowns Ci1(λ), . . . , Cin(λ):

fi(λ · ω1) = Ci1(λ) · f1(ω1) + . . .+ Cin(λ) · fn(ω1),

. . .

fi(λ · ωj) = Ci1(λ) · f1(ωj) + . . .+ Cin(λ) · fn(ωj), (24)

. . .

fi(λ · ωn) = Ci1(λ) · f1(ωn) + . . .+ Cin(λ) · fn(ωn).

Due to Cramer’s rule, the solution to the system of linear equations can be

represented:

• as the ratio of two polynomials depending on the coefficients and

on the right-hand sides, i.e.,

• as a differentiable function of the coefficients and of the right-hand

sides.

Here:

• The coefficients do not depend on lambda at all and are, thus,

differentiable (namely, constant-valued) functions of λ.

• The right-and sides fi(λ · ωi) are also differentiable functions of λ

– since the functions fi are differentiable.
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Thus, the values Cij(λ) are also differentiable function of λ.

So, in the equation (22), all the functions are differentiable. Thus, we

can differentiate both sides with respect to λ and get the following equation:

ω · f ′i(λ · ω) = C ′i1(λ) · f1(ω) + . . .+ C ′in(λ) · fn(ω), (25)

where f ′i and C ′ij , as usual, denotes the derivative of the corresponding

function fi or Cij .

In particular, for λ = 1, we get

ω · f ′i(ω) = ci1 · f1(ω) + . . .+ cin · fn(ω), (26)

where we denoted cij
def
= C ′ij(1).

The equation (26) can be further simplified if instead of the original

variable ω, we introduce:

• a new variable w = ln(ω) for which ω = exp(w), and

• the corresponding new functions Fi(w)
def
= fi(exp(w)) for which

fi(ω) = Fi(ln(ω)). (27)

In these terms,

F ′i (w) =
dFi
dw

=
dfi(exp(w))

dw
= f ′i(exp(w)) · exp(w) = f ′i(ω) · ω, (28)

which is exactly the left-hand side of the equation (26). Thus, in terms of

the new variables and new functions, the equations (26) corresponding to

i = 1, . . . , n take the form

F ′1(w) = c11 · F1(w) + . . .+ c1j · fj(w) + . . .+ c1n · Fn(w),

. . .

F ′i (w) = ci1 · F1(w) + . . .+ cij · fj(w) + . . .+ cin · Fn(w), (29)

. . .

F ′b(w) = cn1 · F1(w) + . . .+ cnj · fj(w) + . . .+ cnn · Fn(w).

So, the functions F1(w), . . . , Fn(w) satisfy a system of linear differential

equations with constant coefficients. It is know that a general solution to

such a system is a linear combination of the functions wk ·exp(a ·w), where:

• a is an eigenvalue of the matrix ‖cij‖, and
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• k is a non-negative integer which is smaller than the multiplicity

of the eigenvalue.

Thus, each function fi(ω) = Fi(ln(ω)) is a linear combination of the

functions (ln(ω))k · exp(a · ln(ω)). Here,

exp(a · ln(ω)) = (exp(ln(ω)))a = ωa, (30)

so we conclude that each function fi(ω) is a linear combination of the

expressions (ln(ω))k · ωa.

Since each function `(ω) = ln(χ(ω)) is a linear combination of the func-

tions fi(ω), it is also equal to the linear combination of the expressions

(ln(ω))k · ωa. The proposition is thus proven.
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