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In many practical situations, the only information that we have about mea-

surement errors is the upper bound on their absolute values. In such situations,
the only information that we have after the measurement about the actual (un-

known) value of the corresponding quantity is that this value belongs to the

corresponding interval: e.g., if the measurement result is 1.0, and the upper
bound is 0.1, then this interval is [1.0−0.1, 1.0+0.1] = [0.9, 1.1]. An important

practical question is what is the resulting interval uncertainty of indirect mea-

surements, i.e., in other words, how interval uncertainty propagates through
data processing. There exist feasible algorithms for solving this problem when
data processing is linear, but for quadratic data processing techniques, the
problem is, in general, NP-hard. This means that (unless P=NP) we cannot
have a feasible algorithm that always computes the exact range, we can only

find good approximations for the desired interval. In this paper, we propose
two new metrologically motivated approaches (and algorithms) for computing

such approximations.

Keywords: interval computations, measurement uncertainty, NP-hard prob-
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lems, monotonicity, indirect measurements, uncertainty quantification

1. Why Interval Computations

Measurement uncertainty is ubiquitous. Measurements are never ab-

solutely accurate: the measurement result x̃ is, in general, different from

the actual (unknown) unknown value x of the corresponding quantity; see,

e.g.,8.

Case of interval uncertainty. Traditional metrological techniques as-

sumes that we know the probability distribution of the measurement error

∆x
def
= x̃− x.

However, in many real-life situations, the only information that we have

about the measurement error is the upper bound ∆ on its absolute value:

|∆x| ≤ ∆. In these situations, we do not have any information about

the probability of different values, we do not even know which values are

more probable and which are less probable. In principle, any probability

distribution on the interval [−∆,∆] is possible.

In this case, after we get the measurement result x̃, the only information

that we have about the actual value x is that x belongs to the interval

[x̃−∆, x̃+ ∆]; see, e.g.,8.

Why interval uncertainty. The usual way of determining the probability

distribution of the measurement errors is to calibrate the measuring instru-

ment, i.e., to compare, several times, the results of measuring the same

value by this instrument and by a much more accurate (“standard”) one.

Since the measurement error of the standard instrument is much smaller

that the measurement error of our instrument, we can safely ignore this

standard measurement error and assume that the values x̃st measured by

the standard instrument represent the actual values of the corresponding

quantity. Under this assumption, the difference x̃ − x̃st is approximately

equal to the measurement error ∆x = x̃ − x. After we perform this com-

parison several times, we get a sample of values of measurement error – and

from this sample, we can determine the desired probability distribution.

This procedure is reasonable, and it is often implemented, but there

are two important classes of situations in which this calibration is not per-

formed. First, this procedure is not done for cutting-edge measurements,

when the measuring instrument that we use is among the most accurate,

and thus, there is no much more accurate instrument that could be used

as a standard. Second, this procedure is often not done in practice simply
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because calibration is an expensive procedure: e.g., when high school kids

build robots, they can buy very cheap sensors, but calibrating each sen-

sor would require the use of expensive high-accuracy measuring instrument

and would thus cost much more than sensors themselves. As a result, in

manufacturing, often, instead of calibrating a sensor, practitioners simply

use the upper bound on the measurement error – bound provided by the

manufacturer of the measuring instrument.

Need for indirect measurements. Some quantities we can measure

directly. Other quantities y are difficult to measure directly. To estimate

these quantities:

• we find (and measure) easier-to-measure quantities x1, . . . , xn
which are related to the desired quantity y by a known dependence

y = f(x1, . . . , xn),

• and then we plug in the measurement results x̃i into this formula,

producing an estimate ỹ = f(x̃1, . . . , x̃n).

This estimation process is known as indirect measurement or, alternatively,

data processing.

Need for take measurement uncertainty into account in indirect

measurements. The measurement results x̃i are, in general, somewhat

different from the actual (unknown) values xi of the corresponding quan-

tities. As a result, the estimate ỹ = f(x̃1, . . . , x̃n) is, in general, different

from the actual value y = f(x1, . . . , xn) of the desired quantity. A natural

metrological equation is: how big is the difference ∆y
def
= ỹ − y? What can

we say about the measurement error ∆y of the indirect measurement?

Why not use uniform distributions? At first glance, the situation

can be covered by the traditional probabilistic methods. Indeed, since we

do not know which values of a measurement error ∆xi are more probable

and which are less probable, a reasonable idea is to assume that all these

values are equally probable, i.e., that we have a uniform distribution on

the corresponding interval [−∆i,∆i]. However, it is easy to show that this

seemingly natural idea may lead to a drastic overestimation of the accuracy

of the indirect measurement.

Indeed, let us consider a simple situation when f(x1, . . . , xn) =
n∑

i=1

xi,

all the measurement results are zeros, i.e., x̃1 = . . . = x̃n = 0, and all the
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upper bounds on the measurement errors are equal to 1:

∆1 = . . . = ∆n = 1.

In this situation, the result of data processing is 0: ỹ =
n∑

i=1

x̃i = 0, so

∆y = y. The value ∆y = y attains its largest possible value when all the

terms xi attain their largest possible value xi = 1. In this case, y = n, so

the largest possible value of ∆y is equal to n.

But what if we assume that all measurement errors ∆xi are uniformly

distributed on the interval [−∆i,∆i] = [−1, 1]? In this case, for large n, the

value y is the sum of a large number of independent identically distributed

random variables. Due to the Central Limit Theorem, the distribution of

the sum y is thus close to normal. The mean of the sum is equal to the

sum of the means, i.e., to 0, and the variance σ2 of the sum is equal to

the sum of n variances, i.e., to n/3. Thus, the distribution of y is close

to a normal distribution with mean 0 and standard deviation
√
n/
√

3. In

practice, deviations larger than 6σ are so improbable that they are ignored.

So, we conclude that all the values of y are bounded by 6σ = (6/
√

3) ·
√
n.

For large n, this value const·
√
n is much smaller than the actual possible

value n of the measurement error – a drastic underestimation of the error

of indirect measurement (and thus, a drastic overestimation of accuracy).

In many critical situations, an underestimation of the measurement error

can lead to a disaster: e.g., when, based on the measurement results, we

think that we are still within the safe zone, but in reality, we have already

crossed the threshold to a danger zone.

Summarizing: from the metrological viewpoint, we cannot simply re-

place the interval uncertainty with a uniform distribution, we have to con-

sider interval uncertainty – i.e., in effect, consider all possible probability

distributions on each interval.

Need for interval computations. As we have mentioned earlier, often,

we have the case of interval uncertainty, when the only information that

we have about each value xi is that this value belongs to the corresponding

interval [xi, xi]. In this case, the only information that we have about the

value y = f(x1, . . . , xn) is that this value belongs to the range [y−, y+] of all

possible values f(x1, . . . , xn) when each xi is in the corresponding interval:

[y−, y+] = f([x1, x1], . . . , [xn, xn])
def
=

{f(x1, . . . , xn) : x1 ∈ [x1, x1], . . . , xn ∈ [xn, xn]}.

Computation of this range is known as interval computations; see, e.g.,2,4,5.
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2. Interval Computations – Successes and Challenges:

A Very Brief Overview

Measurement errors are usually small. Each interval of possible values

of xi has the form [xi, xi] = [x̃i − ∆i, x̃i + ∆i]. Each value xi from this

interval has the form xi = x̃i −∆xi, where |∆xi| ≤ ∆i. Thus, the actual

value y = f(x1, . . . , xn) has the form y = f(x̃1 −∆x1, . . . , x̃n −∆xn), and

the measurement error ∆y of the indirect measurement has the form

∆y = ỹ − y = f(x̃1, . . . , x̃n)− f(x̃1 −∆x1, . . . , x̃n −∆xn). (1)

The dependence f(x1, . . . , xn) is usually analytical. Thus, the expres-

sion (1) can be expanded into power series in terms of the unknown values

∆xi, i.e., represented as the sum of terms which are linear in ∆xi, terms

quadratic in terms of ∆xi, terms cubic in terms of ∆xi, etc. The mea-

surement errors ∆xi are usually relatively small: usually, no more than

20% (and in most cases, much smaller than that). In this case, terms

quadratic in ∆xi are of order (20%)2 = 4%, terms cubic in ∆xi are of order

(20%)3 = 0.8%, etc. The higher the order, the smaller corresponding terms.

Thus, from the practical viewpoint, we can safely ignore higher order terms

in this expansion and only keep terms up to a certain power. For example,

we can keep:

• only linear terms or

• only linear and quadratics terms.

Comment. If we want a more accurate estimate, then, instead of ignoring

higher order terms, we can add one of the known bounds for the remaining

terms.

What if we only keep linear terms. If we only keep linear terms, then

we get a formula

∆y =

n∑
i=1

ci ·∆xi, (2)

where ci
def
=

∂f

∂xi
.

In this case, each term ci ·∆xi in the sum is independent – in the sense

that each terms depend only on its own variable ∆xi. So the sum attains

its largest possible value ∆ when each of the terms is the largest possible.

Here:
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• If ci > 0, then the expression ci · ∆xi is increasing in ∆xi, so

its largest possible value is attained when the value ∆xi is the

largest, i.e., when ∆xi = ∆i. In this case, the expression has the

value ci ·∆i.

• If ci < 0, then the expression ci · ∆xi is decreasing in ∆xi, so

its largest possible value is attained when the value ∆xi is the

smallest, i.e., when ∆xi = −∆i. In this case, the expression has

the value −ci ·∆i.

In both case, the largest possible value of each term ci · ∆xi is |ci| · ∆i.

Thus, the largest possible value ∆ of the sum ∆y of these n terms is equal

to the sum of these largest value:

∆
def
=

n∑
i=1

|ci| ·∆i. (3)

Similarly, the sum attains its smallest possible value ∆ when each of

the terms is the smallest possible. Here:

• If ci > 0, then the expression ci · ∆xi is increasing in ∆xi, so

its smallest possible value is attained when the value ∆xi is the

smallest, i.e., when ∆xi = −∆i. In this case, the expression has

the value −ci ·∆i.

• If ci < 0, then the expression ci · ∆xi is decreasing in ∆xi, so

its smallest possible value is attained when the value ∆xi is the

largest, i.e., when ∆xi = ∆i. In this case, the expression has the

value ci ·∆i.

In both case, the smallest possible value of each term ci ·∆xi is −|ci| ·∆i.

Thus, the smallest possible value of ∆y is equal to

−
n∑

i=1

|ci| ·∆i,

i.e., to −∆, where ∆ is the expression (3). Thus, the range of ∆y is the

interval [−∆,∆].

The expression (3) is easy to compute – it requires O(n) steps, i.e.,

linear time.

What if we also keep quadratic terms: general case. In this case,

we have a quadratic expression

∆y =

n∑
i=1

ci ·∆xi +

n∑
i=1

n∑
j=1

cij ·∆xi ·∆xj , (4)
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where cij = cji
def
=

1

2
· ∂2f

∂xi∂xj
. We want to find the minimum y and the

maximum y of the expression (4) when ∆xi ∈ [−∆i,∆i].

It turns out that this problem is already NP-hard; see, e.g.,6. This

means that (unless P = NP) no feasible algorithm can always compute the

bounds y− and y+; see, e.g.,3,7.

Since we cannot compute the exact bounds, we need to provide estimates

for these bounds – to be more precise, upper bounds, since one of the

main purposes of metrology is to provide guaranteed upper bounds on the

measurement errors.

Using monotonicity. One of the main ideas in interval computations is

that if a function is monotonic with respect to one of the variables ∆xi,

then to compute its range, it is sufficient to consider only the endpoints of

the range [−∆i,∆i].

Specifically, if the expression (4) is increasing in ∆xi, then:

• to find y+, it is sufficient to consider the value ∆xi = ∆i, and

• to find y−, it is sufficient to consider the value ∆xi = −∆i.

Similarly, if the expression (4) is decreasing in ∆xi, then:

• to find y+, it is sufficient to consider the value ∆xi = −∆i, and

• to find y−, it is sufficient to consider the value ∆xi = ∆i.

How can we check whether the expression (4) is increasing or decreasing

with respect to xi? According to calculus:

• an expression is increasing on some domain if and only if the partial

derivative with respect to xi is non-negative for all the points from

this domain, and

• an expression is increasing on some domain if and only if the partial

derivative with respect to xi is non-negative for all the points from

this domain.

For a quadratic expression, the partial derivative is linear, it is equal to

ci + 2

n∑
j=1

cij ·∆xj .

We already know how to compute the range of a linear function. So, the
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range of the partial derivative is equal to:ci − 2

n∑
j=1

|cij | ·∆j , ci + 2

n∑
j=1

|cij | ·∆j

 .
Here:

• If the lower endpoint of this interval is non-negative, this means

that the derivative is always non-negative, so the expression is in-

creasing in ∆xi.

• If the upper endpoint of this interval is non-positive, this means

that the derivative is always non-positive, so the expression is de-

creasing in ∆xi.

Thus, for each i, we compute the value si
def
= 2

n∑
j=1

|cij | ·∆j . If ci − si ≥ 0,

then:

• to compute y+, we replace ∆xi in the expression (4) with ∆i; and

• to compute y−, we replace ∆xi in the expression (4) with −∆i.

Similarly, if ci + si ≤ 0, then:

• to compute y+, we replace ∆xi in the expression (4) with −∆i;

and

• to compute y−, we replace ∆xi in the expression (4) with ∆i.

After we do this for all variables, we get – for each of the two problems of

computing y− and of computing y+ – an expression of the similar type (4),

but with fewer variables – namely, only with variables xi with respect to

which the original expression was neither everywhere increasing not every-

where decreasing.

So, we end with the same problem of computing the range of the expres-

sion (4), but with fewer variables than originally. How can we compute it?

Straightforward approach and a natural question. If we find upper

bounds for each term in the expression (4), then by adding them, we clearly

get an upper bound for the expression (4). When |∆xi| ≤ ∆i and |∆xj | ≤
∆j , then we have |∆xi·∆xj | ≤ ∆i·∆j . Similarly, we conclude that the range

of possible values of (∆xi)
2 is the interval

[
0, (∆i)

2
]
. Thus, for expression
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(4), we get the following upper bound Y and lower bound Y :

Y =

n∑
i=1

|ci| ·∆i +
∑

i:cii>0

cii · (∆i)
2 +

∑
i 6=j

|cij | ·∆i ·∆j ;

Y = −
n∑

i=1

|ci| ·∆i −
∑

i:cii<0

|cii| · (∆i)
2 −

∑
i 6=j

|cij | ·∆i ·∆j .

These formulas are clearly feasible while the problem of computing the

exact range is, as have mentioned, NP-hard. Thus, these formulas do not

always produce exact ranges.

So, a natural question is: can we – and if yes, how – find more accurate

bounds, i.e., bounds which are closer to the actual difficult-to-compute

ranges?

Two natural simplifications. Computations can be somewhat less cum-

bersome if:

• instead of the original variables ∆xi – which take any values from

−∆i to ∆i,

• we consider auxiliary variables zi
def
= sign(ci) ·

∆xi
∆i

for which zi ∈
[−1, 1] and ∆xi = ∆i · zi.

Substituting the expression for ∆xi in terms of zi into the formula (4), we

get an expression
n∑

i=1

ai · zi +

n∑
i=1

n∑
j=1

aij · zi · zj , (5)

where ai
ref
= ci · sign(ci) ·∆i = |ci| ·∆i ≥ 0 and

aij
def
= cij · digns(ci) · sign(cj) ·∆i ·∆j .

The task it then to find the largest and the smallest value of the expression

(5) when zi ∈ [−1, 1].

This was the first simplification. The second simplification is that to

compute the minimum of an expression, it is sufficient to consider the max-

imum of minus this expression. Since minus quadratic expression is still a

quadratic expression, it is therefore sufficient to learn how to compute the

maximum.

What we do in this paper. In this paper, we describe two approaches

to compute such more accurate bounds.
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3. First Approach: Taking Major Inputs into Account

Idea. In many cases, one input zi is the most influential. In such cases,

it is reasonable to assume that the effect of this input provides the largest

contribution to the quadratic part of the expression (5). The corresponding

quadratic terms is aii · z2i .

We may have another input which is almost as influential, for which the

corresponding major term is ajj · z2j .

Since we cannot estimate the exact range of the expression (5) that

contains all the quadratic terms, a natural idea is:

• to estimate the expression that have all linear terms and the above-

mentioned major quadratic terms, and then

• to use the straightforward estimation method to take all other

terms into account – hoping that these other terms are smaller

and thus, their overestimation will be smaller.

Resulting problem. We want to find the largest possible value e of the

expression

e
def
=
∑
i=1

ai · zi +

n∑
i=1

aii · z2i (6)

when zi ∈ [−1, 1].

How to solve this problem: idea and resulting algorithm. The

expression (6) is the sum of n independent expressions, each of which de-

pends only on one of the variables zi. Thus, the desired maximum e is

simply equal to sum of the maxima of the corresponding n expressions.

For a quadratic expression ai · zi + aii · z2i of one variable, its maximum

on the interval [−1, 1] is attained:

• either at one of the endpoints, i.e., for zi = −1 or for zi = 1,

• or at the point where the derivative of this expression is equal to 0,

i.e., at the point zi = − ai
2aii

– provided that this point is located

inside the interval [−1, 1].

For each i, the values at these three (or two) points can be easily computed,

their largest of these three (or two) points can also be easily computed. The

sum of these n maxima is the desired bound e.

For each of n values of the index i, we need a fixed number of compu-

tational steps, so overall, this algorithm requires linear time to compute.
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4. Second Approach: Taking Major Combinations of Inputs

into Account

Idea. In the previous section, we considered the case when one of the

inputs makes a major contribution to the measurement error. In practice,

however, we may have a situation in which the major contributor is not

one of the inputs, but rather a linear combination of such inputs.

Let us clarify what we mean. In the linear approximation, the mea-

surement error is equal to
n∑

i=1

ai · zi =
n∑

i=1

ci · ∆xi. This value is equal to

the difference ∆x between the estimated and actual values of the linear

combination x
def
=

n∑
i=1

ci · xi. This linear combination is responsible for all

the linear terms. Since the quadratic terms are usually much smaller than

the linear terms, this means that the linear combination x is the major

contributor to the measurement error.

If we only take this linear combination into account, but allow quadratic

dependence, then we get an expression of the type

n∑
i=1

ai · zi + C ·

(
n∑

i=1

ai · zi

)2

,

for some constant C.

Of course, there may be other (“secondary”) linear combinations

n∑
i=1

bkj · xj (k = 1, 2, . . .)

whose contribution is smaller than the contribution of x but which we would

like to also take into account. We are considering quadratic expressions, so

we may have quadratic terms of two types:

• terms proportional to the product of the major linear combination

and one of the secondary linear combinations, and

• terms proportional to the square of a secondary combination or to

a product of two secondary combinations.

Since the major combination has the largest effect on the measurement

error, it is reasonable to assume that the joint effect of two combinations is

larger when one of these combinations is the major one. Since we cannot

take all the terms into account – this will make the problem NP-hard – it

makes sense to only take such larger terms into account, i.e., to consider
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the expression of the type:

n∑
i=1

ai · zi + C ·

(
n∑

i=1

ai · zi

)2

+
∑
k

Ck ·

(
n∑

i=1

ai · zi

)
·

 n∑
j=1

bkj · zj

 ,

for some coefficients Ck. All non-linear terms in this formula have the same

factor
n∑

i=1

ai ·zi. By combining these terms, we get the following expression:

e
def
=

n∑
i=1

ai · zi +

(
n∑

i=1

ai · zi

)
·

 n∑
j=1

bj · zj

 , (7)

where bj
def
= C · aj +

∑
k

Ck · bkj .

Resulting problem. We want to find the largest possible value e of the

expression (7) when zi ∈ [−1, 1].

Natural simplification. If for some i and j, we have
bi
ai

=
bj
aj

, then

bi · zi + bj · zj = c · (ai · zi + aj · zj),

where

c
def
=

bi
ai

=
bj
aj
.

Thus:

• instead of two independent variables zi and zj ,

• we have, in effect, a single variable ai · zi + aj · zj .

When zi ∈ [−1, 1] and zj ∈ [−1, 1], this variables takes all possible values

from the interval [−(ai+aj), ai+aj ]. We can therefore simplify the problem

if follow the same idea that we used to introduce the variables ai; namely:

• in the “a-term”, we replace the expression ai · zi + aj · zj
• with the expression (ai + aj) · zij for a new variable zij ∈ [−1, 1].

Correspondingly, in the “b-term”:

• we replace the sum bi · zi + bj · zj
• with the expression [c · (ai + aj)] · zij .
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By applying this simplification, we will end up with a problem with fewer

variables, in which all the ratios
bi
ai

are different.

How to solve our problem: idea. According to calculus, the maximum

of a function f(xi) on an interval – in particular, on the interval [−1, 1] is

attained in one of the three cases:

• The maximum can be attained at the left endpoint – in our case,

at the point zi = −1. In this case, at this point, we must have
∂f

∂zi
≤ 0. Indeed, if this partial derivative was positive, the value of

the function would increase when we slightly increase zi from −1,

so we would not have the maximum at the point −1.

• The maximum can be attained at the right endpoint – in our case,

at the point zi = 1. In this case, at this point, we must have
∂f

∂zi
≥ 0. Indeed, if this partial derivative was negative, the value

of the function would increase when we slightly decrease zi from 1,

so we would not have the maximum at the point 1.

• The maximum can also be attained inside the interval. In this case,

the partial derivative should equal to 0:
∂f

∂zi
≤ 0.

So:

• If at the point where the maximum is attained, we have
∂f

∂zi
> 0,

this would mean that at this point, zi = 1 – otherwise, the partial

derivative would be non-positive.

• Similarly, if at the point where the maximum is attained, we have
∂f

∂zi
< 0, this would mean that at this point, zi = −1 – otherwise,

the partial derivative would be non-negative.

For the expression (7), the partial derivative is equal to

∂f

∂zi
= ai ·B + bi ·A,

where

A
def
=
∑
j=1

aj · zj and B
def
= 1 +

n∑
j=1

bj · zj .

To decide for which values zi the maximum is attained, we need to analyze

the sign of this partial derivative.
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Here, ai ≥ 0, so the inequality ai · B + bi · A > 0 is equivalent to

B +
bi
ai
·A > 0. Let us consider two possible cases: A > 0 and A < 0.

Case when A > 0. If A > 0, then the above inequality B +
bi
ai
·A > 0 is,

in its turn, equivalent to

bi
ai
> −B

A
.

We know that all the values
bi
ai

are different. Let us order the indices i

so that these ratios are increasing:

b1
a1

<
b2
a2

< . . . <
bn
an
. (8)

There exists a threshold −B
A

so that:

• for all indices for which the ratio
bi
ai

is larger than this threshold,

the partial derivative
∂f

∂zi
is positive and thus, zi = 1;

• similarly, for all indices i for which the ratio
bi
ai

is smaller than this

threshold, the partial derivative
∂f

∂zi
is negative and thus, zi = −1.

There can be no more than one value i for which the ratio
bi
ai

is exactly

equal to the threshold. For this index i, we cannot say anything about the

value zi. So, when A > 0, in the order of indices, the optimal sequence of

values zi should be

(−1,−1, . . . ,−1, zi, 1, . . . , 1) (9)

Case when A < 0. If A > 0, then the inequality B +
bi
ai
· A > 0 is, in its

turn, equivalent to

bi
ai
< −B

A
.

So, in this case:
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• for all indices for which the ratio
bi
ai

is smaller than this threshold,

the partial derivative
∂f

∂zi
is positive and thus, zi = 1;

• similarly, for all indices i for which the ratio
bi
ai

is larger than this

threshold, the partial derivative
∂f

∂zi
is negative and thus, zi = −1.

There can be no more than one value i for which the ratio
bi
ai

is exactly

equal to the threshold. For this index i, we cannot say anything about the

value zi. So, when A < 0, in the order of indices, the optimal sequence of

values zi should be

(1, 1, . . . , 1, zi,−1, . . . ,−1). (10)

General comment. A priori, we do not know whether the maximum will

be attained when A > 0 or when A < 0. So, a reasonable idea is to try all

possible combinations (9) and (10).

Thus, we arrive at the following algorithm.

Resulting algorithm. First, we sort all the indices in the increasing

order (8) of the ratios
bi
ai

. Then, for each i0 from 1 to n, we substitute the

following values into the expression (7):

• zi = −1 for i < i0, and

• zi = 1 for i > i0.

The value zi0 is obtained from the condition that the resulting quadratic

function of the only remaining variable zi0 attains the largest possible value.

Similarly, for each i0 from 1 to n, we substitute the following values into

the expression (7):

• zi = 1 for i < i0, and

• zi = −1 for i > i0.

The value zi0 is obtained from the condition that the resulting quadratic

function of zi0 attains the largest possible value.

This way, we get 2n different values of the expression (7). The largest

of these values is the desired maximum e of the expression (7).
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Comment. Sorting requires time O(n · log(n)); see, e.g.,1. The remaining

part of the algorithm requires computing 1n values, each of which requires

O(n2) operations, so the overall time is O(n3) – very feasible.

How to find the values bj? The above algorithm assumes that we know

the values bj . But in general, all we know are the values ai and aij . How

can we find the values bj based on this information?

Our objective is to minimize the remaining part of the quadratic form

– i.e., the terms which are not covered by the algorithm. For each i and j:

• The original coefficient at zi ·zj was aii for i = j and 2aij for i 6= j.

• In the form (7), we have the coefficient ai · bi for i = j and ai · bj +

aj · bi for i 6= j.

• Thus, in the remaining part, the coefficient at zi · zj is aii − ai · bi
for i = j and 2aij − (ai · bj + aj · bi) for i 6= j.

For this remainder, the above-mentioned straightforward estimate of the

value of this term is (taking into account that the upper bound for each

|zi| is 1):

n∑
i=1

n∑
j=1

∣∣∣∣aij − ai · bj + aj · bi
2

∣∣∣∣ . (11)

We want to find the values bj that minimize this estimate. The expression

(11) is a convex function, and there exist feasible algorithms for minimizing

convex functions. Thus, computing the values bj is also feasible.

5. Conclusions

In many practical situations, the only information that we have about

each measurement error ∆xi is the upper bound ∆i on its absolute value:

|∆xi| ≤ ∆i. In such situations, we do not know which values ∆xi are more

probable and which are less probable. In this case, once we know the result

x̃i of measuring the corresponding quantity, the only conclusion that we

can make about the actual (unknown) value xi of this quantity is that this

value is located in the interval [x̃i −∆i, x̃i + ∆i]. Since the measurement

results x̃i are, in general, different from the actual values xi, the result

ỹ = f(x̃1, . . . , x̃n) of processing the measured values is different from the

value y = f(x1, . . . , xn) that we would get if we could process the actual

values of the corresponding quantities. A practically important question

is to gauge the difference ∆y
def
= ỹ − y, i.e., the error of the corresponding

indirect measurement.
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In most real-life situations, the measurement errors are relatively small,

so in the Taylor expansion of the formula for ∆y, we can safely ignore terms

which are of higher order in ∆xi, and keep only linear and quadratic terms.

Sometimes, the measurement errors are so small that even the quadratic

terms can be safely ignored. For such cases, there exist feasible algorithms

for gauging ∆y.

However, in general, when quadratic terms cannot be ignored, the prob-

lem of gauging ∆y is NP-hard. This means that, in general, it is not possible

to have a feasible algorithm that would always compute the exact upper

bound on |∆y|; at best, we can find upper bounds which are not always

exact.

In this paper, we describe two metrologically motivated methods for

improving the resulting upper bounds.
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