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In many practical situations, the only information that we have about mea-
surement errors is the upper bound on their absolute values. In such situations,
the only information that we have after the measurement about the actual (un-
known) value of the corresponding quantity is that this value belongs to the
corresponding interval: e.g., if the measurement result is 1.0, and the upper
bound is 0.1, then this interval is [1.0—0.1,1.04-0.1] = [0.9,1.1]. An important
practical question is what is the resulting interval uncertainty of indirect mea-
surements, i.e., in other words, how interval uncertainty propagates through
data processing. There exist feasible algorithms for solving this problem when
data processing is linear, but for quadratic data processing techniques, the
problem is, in general, NP-hard. This means that (unless P=NP) we cannot
have a feasible algorithm that always computes the exact range, we can only
find good approximations for the desired interval. In this paper, we propose
two new metrologically motivated approaches (and algorithms) for computing
such approximations.

Keywords: interval computations, measurement uncertainty, NP-hard prob-
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lems, monotonicity, indirect measurements, uncertainty quantification

1. Why Interval Computations

Measurement uncertainty is ubiquitous. Measurements are never ab-

solutely accurate: the measurement result = is, in general, different from

the actual (unknown) unknown value z of the corresponding quantity; see,
8

e.g.,°.

Case of interval uncertainty. Traditional metrological techniques as-
sumes that we know the probability distribution of the measurement error
Ar ¥ 57—z

However, in many real-life situations, the only information that we have
about the measurement error is the upper bound A on its absolute value:
|Az| < A. In these situations, we do not have any information about
the probability of different values, we do not even know which values are
more probable and which are less probable. In principle, any probability
distribution on the interval [—A, A] is possible.

In this case, after we get the measurement result Z, the only information
that we have about the actual value x is that x belongs to the interval
7 — A, T+ A; see, e.g.,5.

Why interval uncertainty. The usual way of determining the probability
distribution of the measurement errors is to calibrate the measuring instru-
ment, i.e., to compare, several times, the results of measuring the same
value by this instrument and by a much more accurate (“standard”) one.
Since the measurement error of the standard instrument is much smaller
that the measurement error of our instrument, we can safely ignore this
standard measurement error and assume that the values T measured by
the standard instrument represent the actual values of the corresponding
quantity. Under this assumption, the difference & — I is approximately
equal to the measurement error Ax = T — x. After we perform this com-
parison several times, we get a sample of values of measurement error — and
from this sample, we can determine the desired probability distribution.
This procedure is reasonable, and it is often implemented, but there
are two important classes of situations in which this calibration is not per-
formed. First, this procedure is not done for cutting-edge measurements,
when the measuring instrument that we use is among the most accurate,
and thus, there is no much more accurate instrument that could be used
as a standard. Second, this procedure is often not done in practice simply
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because calibration is an expensive procedure: e.g., when high school kids
build robots, they can buy very cheap sensors, but calibrating each sen-
sor would require the use of expensive high-accuracy measuring instrument
and would thus cost much more than sensors themselves. As a result, in
manufacturing, often, instead of calibrating a sensor, practitioners simply
use the upper bound on the measurement error — bound provided by the
manufacturer of the measuring instrument.

Need for indirect measurements. Some quantities we can measure
directly. Other quantities y are difficult to measure directly. To estimate
these quantities:

e we find (and measure) easier-to-measure quantities zi,...,x,
which are related to the desired quantity y by a known dependence

y:f(xlu"wxn)y

e and then we plug in the measurement results z; into this formula,
producing an estimate §y = f(Z1,...,Zn)-

This estimation process is known as indirect measurement or, alternatively,
data processing.

Need for take measurement uncertainty into account in indirect
measurements. The measurement results z; are, in general, somewhat
different from the actual (unknown) values z; of the corresponding quan-
tities. As a result, the estimate §y = f(Z1,...,Z,) is, in general, different
from the actual value y = f(z1,...,x,) of the desired quantity. A natural
metrological equation is: how big is the difference Ay def y —y? What can
we say about the measurement error Ay of the indirect measurement?

Why not use uniform distributions? At first glance, the situation
can be covered by the traditional probabilistic methods. Indeed, since we
do not know which values of a measurement error Ax; are more probable
and which are less probable, a reasonable idea is to assume that all these
values are equally probable, i.e., that we have a uniform distribution on
the corresponding interval [—A;, A;]. However, it is easy to show that this
seemingly natural idea may lead to a drastic overestimation of the accuracy
of the indirect measurement.

n
Indeed, let us consider a simple situation when f(x1,...,2,) = > 24,

i=1
all the measurement results are zeros, i.e., T1 = ... = Z,, = 0, and all the
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upper bounds on the measurement errors are equal to 1:
Ai=...=A,=1
n
In this situation, the result of data processing is 0: g = Y. &; = 0, so

Ay = y. The value Ay = y attains its largest possible Valu; x}vhen all the
terms x; attain their largest possible value x; = 1. In this case, y = n, so
the largest possible value of Ay is equal to n.

But what if we assume that all measurement errors Az; are uniformly
distributed on the interval [—A;, A;] = [—1,1]7 In this case, for large n, the
value y is the sum of a large number of independent identically distributed
random variables. Due to the Central Limit Theorem, the distribution of
the sum y is thus close to normal. The mean of the sum is equal to the
sum of the means, i.e., to 0, and the variance o2 of the sum is equal to
the sum of n variances, i.e., to n/3. Thus, the distribution of y is close
to a normal distribution with mean 0 and standard deviation \/n/v/3. In
practice, deviations larger than 60 are so improbable that they are ignored.
So, we conclude that all the values of y are bounded by 60 = (6/v/3) - /n.

For large n, this value const-/n is much smaller than the actual possible
value n of the measurement error — a drastic underestimation of the error
of indirect measurement (and thus, a drastic overestimation of accuracy).
In many critical situations, an underestimation of the measurement error
can lead to a disaster: e.g., when, based on the measurement results, we
think that we are still within the safe zone, but in reality, we have already
crossed the threshold to a danger zone.

Summarizing: from the metrological viewpoint, we cannot simply re-
place the interval uncertainty with a uniform distribution, we have to con-
sider interval uncertainty — i.e., in effect, consider all possible probability
distributions on each interval.

Need for interval computations. As we have mentioned earlier, often,
we have the case of interval uncertainty, when the only information that
we have about each value z; is that this value belongs to the corresponding
interval [z;,7;]. In this case, the only information that we have about the
value y = f(z1,...,%,) is that this value belongs to the range [y, y™] of all

possible values f(z1,...,2,) when each z; is in the corresponding interval:
_ _ _qy def
[y 7y+] = f([&laxl]a ceey [&naxnb =
{f(xla cee axn) HEAIS [glafl]v ceyTn € [@nafn]}

Computation of this range is known as interval computations; see, e.g.,>%°.
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2. Interval Computations — Successes and Challenges:
A Very Brief Overview

Measurement errors are usually small. Each interval of possible values
of x; has the form [z,,7;| = [Z; — A;,T; + A;]. Each value x; from this
interval has the form z; = z; — Axz;, where |Az;| < A;. Thus, the actual
value y = f(z1,...,2,) has the form y = f(Z1 — Az, ...,Z, — Az,), and
the measurement error Ay of the indirect measurement has the form

Ayzg—ny(fh...,fn)—f(ﬁ—Ax1,...,5n—Axn). (1)

The dependence f(z1,...,2,) is usually analytical. Thus, the expres-
sion (1) can be expanded into power series in terms of the unknown values
Ax;, i.e., represented as the sum of terms which are linear in Az;, terms
quadratic in terms of Ax;, terms cubic in terms of Ax;, etc. The mea-
surement errors Az; are usually relatively small: usually, no more than
20% (and in most cases, much smaller than that). In this case, terms
quadratic in Az; are of order (20%)? = 4%, terms cubic in Az; are of order
(20%)3 = 0.8%, etc. The higher the order, the smaller corresponding terms.
Thus, from the practical viewpoint, we can safely ignore higher order terms
in this expansion and only keep terms up to a certain power. For example,
we can keep:

e only linear terms or
e only linear and quadratics terms.

Comment. If we want a more accurate estimate, then, instead of ignoring
higher order terms, we can add one of the known bounds for the remaining
terms.

What if we only keep linear terms. If we only keep linear terms, then
we get a formula

Ay = Zn: ¢ - Awy, (2)

=1

def af

where ¢; = .
ﬁxi

In this case, each term ¢; - Ax; in the sum is independent — in the sense
that each terms depend only on its own variable Ax;. So the sum attains
its largest possible value A when each of the terms is the largest possible.
Here:
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e If ¢; > 0, then the expression ¢; - Ax; is increasing in Az, so
its largest possible value is attained when the value Ax; is the
largest, i.e., when Az; = A;. In this case, the expression has the
value ¢; - A;.

e If ¢; < 0, then the expression ¢; - Ax; is decreasing in Ax;, so
its largest possible value is attained when the value Ax; is the
smallest, i.e., when Ax; = —A,;. In this case, the expression has
the value —c¢; - A;.

In both case, the largest possible value of each term ¢; - Az; is |¢;] - A;.
Thus, the largest possible value A of the sum Ay of these n terms is equal
to the sum of these largest value:

def "
i=1

Similarly, the sum attains its smallest possible value A when each of
the terms is the smallest possible. Here:

o If ¢; > 0, then the expression ¢; - Azx; is increasing in Az;, so
its smallest possible value is attained when the value Ax; is the
smallest, i.e., when Ax; = —A,;. In this case, the expression has
the value —c¢; - A;.

o If ¢; < 0, then the expression ¢; - Ax; is decreasing in Ax;, so
its smallest possible value is attained when the value Ax; is the
largest, i.e., when Az; = A;. In this case, the expression has the
value ¢; - A;.

In both case, the smallest possible value of each term ¢; - Az; is —|¢;| - A,.
Thus, the smallest possible value of Ay is equal to

n
= el - A,
i=1

ie., to —A, where A is the expression (3). Thus, the range of Ay is the
interval [—A, A].

The expression (3) is easy to compute — it requires O(n) steps, i.e.,
linear time.
What if we also keep quadratic terms: general case. In this case,
we have a quadratic expression

i=1

i=1 j=1
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where ¢;; = ¢j; def L 0*f
2 83%8.’L‘J
maximum g of the expression (4) when Az; € [—A;, Ayl
It turns out that this problem is already NP-hard; see, e.g.,5. This
means that (unless P = NP) no feasible algorithm can always compute the
bounds y~ and y™; see, e.g.,>7.
Since we cannot compute the exact bounds, we need to provide estimates

. We want to find the minimum y and the

for these bounds — to be more precise, upper bounds, since one of the
main purposes of metrology is to provide guaranteed upper bounds on the
measurement errors.

Using monotonicity. One of the main ideas in interval computations is
that if a function is monotonic with respect to one of the variables Ax;,
then to compute its range, it is sufficient to consider only the endpoints of
the range [—A;, A;].

Specifically, if the expression (4) is increasing in Ax;, then:

e to find y*, it is sufficient to consider the value Az; = A;, and
e to find y, it is sufficient to consider the value Ax; = —A;.

Similarly, if the expression (4) is decreasing in Ax;, then:

e to find yT, it is sufficient to consider the value Ax; = —A;, and
e to find y~, it is sufficient to consider the value Az; = A;.

How can we check whether the expression (4) is increasing or decreasing
with respect to z;? According to calculus:

e an expression is increasing on some domain if and only if the partial
derivative with respect to x; is non-negative for all the points from
this domain, and

e an expression is increasing on some domain if and only if the partial
derivative with respect to x; is non-negative for all the points from
this domain.

For a quadratic expression, the partial derivative is linear, it is equal to
n
C; + 2ZCZ'J' . A.Tj.
j=1

We already know how to compute the range of a linear function. So, the
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range of the partial derivative is equal to:

n n
C; *2Z|Cij| ‘Aj,Ci +QZ|C”| ‘Aj
j=1 j=1

Here:

e If the lower endpoint of this interval is non-negative, this means
that the derivative is always non-negative, so the expression is in-
creasing in Az;.

e If the upper endpoint of this interval is non-positive, this means
that the derivative is always non-positive, so the expression is de-
creasing in Ax;.

n
Thus, for each ¢, we compute the value s; def o Stleiil - A e — s >0,
j=1

then:

e to compute yT, we replace Ax; in the expression (4) with A;; and
e to compute y~, we replace Az, in the expression (4) with —A,.

Similarly, if ¢; + s; < 0, then:

e to compute yT, we replace Az; in the expression (4) with —A;;
and
e to compute y~, we replace Ax; in the expression (4) with A,.

After we do this for all variables, we get — for each of the two problems of
computing y~ and of computing ¥ — an expression of the similar type (4),
but with fewer variables — namely, only with variables x; with respect to
which the original expression was neither everywhere increasing not every-
where decreasing.

So, we end with the same problem of computing the range of the expres-
sion (4), but with fewer variables than originally. How can we compute it?

Straightforward approach and a natural question. If we find upper
bounds for each term in the expression (4), then by adding them, we clearly
get an upper bound for the expression (4). When |Az;| < A; and |Az;| <
Aj, then we have |Az;-Ax;| < A;-A;. Similarly, we conclude that the range
of possible values of (Az;)? is the interval [0, (A;)?]. Thus, for expression
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(4), we get the following upper bound Y and lower bound Y

Y = Z\CH'Az’ + Z cii - (A)? +Z\Cij| WAVERAVE
i=1

1:ci: >0 i#£]

n
Yo==> el - A= > el - (A = leijl - A - A
i=1 i:¢1<0 i£j
These formulas are clearly feasible while the problem of computing the
exact range is, as have mentioned, NP-hard. Thus, these formulas do not
always produce exact ranges.
So, a natural question is: can we — and if yes, how — find more accurate
bounds, i.e., bounds which are closer to the actual difficult-to-compute
ranges?

Two natural simplifications. Computations can be somewhat less cum-
bersome if:

e instead of the original variables Axz; — which take any values from
—Ai to Ai,
e we consider auxiliary variables z; def sign(c;) -

[-1,1] and Ax; = A; - 2.

A.Ti

for which z; €

X3

Substituting the expression for Az; in terms of z; into the formula (4), we
get an expression

n n n
Z(h"Zi—FZZaij'Zi-Zj, (5)
=1

i=1 j=1
where a; & ¢; -sign(e;) - A; = || - A; > 0 and
a;j ef cij - digns(c;) - sign(c;) - A; - Aj.

The task it then to find the largest and the smallest value of the expression
(5) when z; € [-1,1].

This was the first simplification. The second simplification is that to
compute the minimum of an expression, it is sufficient to consider the max-
imum of minus this expression. Since minus quadratic expression is still a
quadratic expression, it is therefore sufficient to learn how to compute the
maximum.

What we do in this paper. In this paper, we describe two approaches
to compute such more accurate bounds.
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3. First Approach: Taking Major Inputs into Account

Idea. In many cases, one input z; is the most influential. In such cases,
it is reasonable to assume that the effect of this input provides the largest
contribution to the quadratic part of the expression (5). The corresponding
quadratic terms is a;; - 212 .

We may have another input which is almost as influential, for which the
corresponding major term is a;; - 2]2

Since we cannot estimate the exact range of the expression (5) that
contains all the quadratic terms, a natural idea is:

e to estimate the expression that have all linear terms and the above-
mentioned major quadratic terms, and then

e to use the straightforward estimation method to take all other
terms into account — hoping that these other terms are smaller
and thus, their overestimation will be smaller.

Resulting problem. We want to find the largest possible value € of the
expression

n
def
e§Zai~zi+Zaii-z? (6)
i=1 i=1
when z; € [-1,1].

How to solve this problem: idea and resulting algorithm. The
expression (6) is the sum of n independent expressions, each of which de-
pends only on one of the variables z;. Thus, the desired maximum € is
simply equal to sum of the maxima of the corresponding n expressions.

For a quadratic expression a; - z; + a;; - 22 of one variable, its maximum
on the interval [—1,1] is attained:

e cither at one of the endpoints, i.e., for z; = —1 or for z; = 1,

e or at the point where the derivative of this expression is equal to 0,
a;

i.e., at the point z; = — — provided that this point is located

all
inside the interval [—1, 1].

For each i, the values at these three (or two) points can be easily computed,
their largest of these three (or two) points can also be easily computed. The
sum of these n maxima is the desired bound e.

For each of n values of the index i, we need a fixed number of compu-
tational steps, so overall, this algorithm requires linear time to compute.
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4. Second Approach: Taking Major Combinations of Inputs
into Account

Idea. In the previous section, we considered the case when one of the
inputs makes a major contribution to the measurement error. In practice,
however, we may have a situation in which the major contributor is not
one of the inputs, but rather a linear combination of such inputs.

Let us clarify what we mean. In the linear approximation, the mea-

n n
surement error is equal to Y a; - z; = > ¢; - Ax;. This value is equal to

i=1 i=1
the difference Az IT)zetween the estimated and actual values of the linear
combination x df > ¢; - x;. This linear combination is responsible for all

i=1
the linear terms. Since the quadratic terms are usually much smaller than

the linear terms, this means that the linear combination x is the major
contributor to the measurement error.

If we only take this linear combination into account, but allow quadratic
dependence, then we get an expression of the type

n n 2
ZGZZZ+C<ZGZZZ> s
=1 i=1

for some constant C.
Of course, there may be other (“secondary”) linear combinations

Zbkj'zj (k:172,)
i=1

whose contribution is smaller than the contribution of x but which we would
like to also take into account. We are considering quadratic expressions, so
we may have quadratic terms of two types:

e terms proportional to the product of the major linear combination
and one of the secondary linear combinations, and

e terms proportional to the square of a secondary combination or to
a product of two secondary combinations.

Since the major combination has the largest effect on the measurement
error, it is reasonable to assume that the joint effect of two combinations is
larger when one of these combinations is the major one. Since we cannot
take all the terms into account — this will make the problem NP-hard — it
makes sense to only take such larger terms into account, i.e., to consider
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the expression of the type:

n n 2 n n
Zai~zi+0-<2ai-zi> +ZCk~<Zai-zi>- Zbkj-zj ,
i=1 i=1 k i=1 j=1

for some coefficients Cj. All non-linear terms in this formula have the same

n
factor 3 a;-z;. By combining these terms, we get the following expression:
i=1

e(iéfialzl—i-(ial,zy) ibj.zj 5 (7)
i=1 i=1 j=1

where b; ' C-a; + 3 Cy - byj.
k

Resulting problem. We want to find the largest possible value € of the
expression (7) when z; € [—1,1].

b; b,
Natural simplification. If for some i and j, we have — = -2, then
a; Qj

bi«zierjozj:c~(aioz¢+aj~zj),

where

Thus:

e instead of two independent variables z; and z;,
e we have, in effect, a single variable a; - z; + a; - ;.

When z; € [-1,1] and z; € [—1,1], this variables takes all possible values
from the interval [—(a;+a;), a;+a;]. We can therefore simplify the problem
if follow the same idea that we used to introduce the variables a;; namely:

e in the “a-term”, we replace the expression a; - z; + a; - 2;
e with the expression (a; + a;) - z;; for a new variable z;; € [-1,1].

Correspondingly, in the “b-term”:

o we replace the sum b; - z; + b; - z;
o with the expression [c- (a; + a;)] - 2ij.
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By applying this simplification, we will end up with a problem with fewer
variables, in which all the ratios 2L are different.

a;
How to solve our problem: idea. According to calculus, the maximum
of a function f(x;) on an interval — in particular, on the interval [—1,1] is
attained in one of the three cases:

e The maximum can be attained at the left endpoint — in our case,
at the point z; = —1. In this case, at this point, we must have
of

Zi
the function would increase when we slightly increase z; from —1,
so we would not have the maximum at the point —1.

e The maximum can be attained at the right endpoint — in our case,

at the point z; = 1. In this case, at this point, we must have

< 0. Indeed, if this partial derivative was positive, the value of

3 > 0. Indeed, if this partial derivative was negative, the value
Zq

of the function would increase when we slightly decrease z; from 1,
so we would not have the maximum at the point 1.

e The maximum can also be attained inside the interval. In this case,

0
the partial derivative should equal to O: 8—f <0.
Z

So:

9]
e If at the point where the maximum is attained, we have a—f > 0,
24

this would mean that at this point, z; = 1 — otherwise, the partial
derivative would be non-positive.
e Similarly, if at the point where the maximum is attained, we have

0
—f < 0, this would mean that at this point, z; = —1 — otherwise,

Gzi

the partial derivative would be non-negative.

For the expression (7), the partial derivative is equal to

of _

- i‘B b2A7
3zi “ *

where
n
AdéfZaszj andBdéfl—i—ij-zj.
=1 j=1

To decide for which values z; the maximum is attained, we need to analyze
the sign of this partial derivative.



November 19, 2020 20:25 WS-procs9x6-9x6 WSPC Proceedings - 9in x 6in tr20-99a page 14

14

Here, a; > 0, so the inequality a; - B + b; - A > 0 is equivalent to

B+ —-.A>0. Let us consider two possible cases: A >0 and A < 0.
Q;

b
Case when A > 0. If A > 0, then the above inequality B + — - A > 0 is,
in its turn, equivalent to '

b; B
a; A ’
b; . o
We know that all the values — are different. Let us order the indices 4
a;
so that these ratios are increasing:
b b b
L2 (8)
a1 az Qnp

B
There exists a threshold - so that:

b;
e for all indices for which the ratio — is larger than this threshold,
i

the partial derivative is positive and thus, z; = 1;

aZi
b
e similarly, for all indices i for which the ratio — is smaller than this
Q;
0]
threshold, the partial derivative is negative and thus, z; = —1.

8Zi

b
There can be no more than one value i for which the ratio — is exactly

a;
equal to the threshold. For this index 4, we cannot say anything about the
value z;. So, when A > 0, in the order of indices, the optimal sequence of
values z; should be

(=1,-1,...,-1,2,1,...,1) (9)

b
Case when A < 0. If A > 0, then the inequality B + — - A > 0 is, in its
turn, equivalent to '

b B

a; A

So, in this case:
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e for all indices for which the ratio ﬁ is smaller than this threshold,

a;
the partial derivative P is positive and thus, z; = 1;
(3
b
e similarly, for all indices i for which the ratio — is larger than this
aj
0
threshold, the partial derivative 8f is negative and thus, z; = —1.
Zi

b
There can be no more than one value 4 for which the ratio — is exactly

equal to the threshold. For this index i, we cannot say anythin?g, about the
value z;. So, when A < 0, in the order of indices, the optimal sequence of
values z; should be

(1,1,...,1,2;,—1,...,—1). (10)

General comment. A priori, we do not know whether the maximum will
be attained when A > 0 or when A < 0. So, a reasonable idea is to try all
possible combinations (9) and (10).

Thus, we arrive at the following algorithm.

Resulting algorithm. First, we sort all the indices in the increasing
b

order (8) of the ratios —. Then, for each ig from 1 to n, we substitute the
@

7
following values into the expression (7):

e z; = —1 for i < ig, and
e z; =1 for i > ig.

The value z;, is obtained from the condition that the resulting quadratic
function of the only remaining variable z;, attains the largest possible value.

Similarly, for each iy from 1 to n, we substitute the following values into
the expression (7):

e z; =1 for i < ig, and
e 2z, = —1 for ¢ > ip.

The value z;, is obtained from the condition that the resulting quadratic
function of z;, attains the largest possible value.

This way, we get 2n different values of the expression (7). The largest
of these values is the desired maximum € of the expression (7).
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Comment. Sorting requires time O(n - log(n)); see, e.g.,!. The remaining
part of the algorithm requires computing 1n values, each of which requires
O(n?) operations, so the overall time is O(n?) — very feasible.

How to find the values b;7 The above algorithm assumes that we know
the values b;. But in general, all we know are the values a; and a;;. How
can we find the values b; based on this information?

Our objective is to minimize the remaining part of the quadratic form
— i.e., the terms which are not covered by the algorithm. For each ¢ and j:

e The original coefficient at z; - z; was a;; for ¢ = j and 2a;; for i # j.

o In the form (7), we have the coefficient a; - b; for i = j and a; - b; +
aj - b; for i # j.

e Thus, in the remaining part, the coefficient at z; - z; is a;; — a; - b;
for i = j and 2a;; — (a; - bj + a; - b;) for i # j.

For this remainder, the above-mentioned straightforward estimate of the
value of this term is (taking into account that the upper bound for each
|z;| is 1):

ai~bj+aj~bi

: (11)

i=1 j=1

We want to find the values b; that minimize this estimate. The expression
(11) is a convex function, and there exist feasible algorithms for minimizing
convex functions. Thus, computing the values b; is also feasible.

5. Conclusions

In many practical situations, the only information that we have about
each measurement error Ax; is the upper bound A; on its absolute value:
|Az;| < A;. In such situations, we do not know which values Ax; are more
probable and which are less probable. In this case, once we know the result
Z; of measuring the corresponding quantity, the only conclusion that we
can make about the actual (unknown) value z; of this quantity is that this
value is located in the interval [Z; — A;, Z; + A;]. Since the measurement
results T; are, in general, different from the actual values x;, the result
y = f(Zy,...,Z,) of processing the measured values is different from the
value y = f(x1,...,x,) that we would get if we could process the actual
values of the corresponding quantities. A practically important question
is to gauge the difference Ay def Yy — y, i.e., the error of the corresponding
indirect measurement.
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In most real-life situations, the measurement errors are relatively small,
so in the Taylor expansion of the formula for Ay, we can safely ignore terms
which are of higher order in Az;, and keep only linear and quadratic terms.
Sometimes, the measurement errors are so small that even the quadratic
terms can be safely ignored. For such cases, there exist feasible algorithms
for gauging Ay.

However, in general, when quadratic terms cannot be ignored, the prob-
lem of gauging Ay is NP-hard. This means that, in general, it is not possible
to have a feasible algorithm that would always compute the exact upper
bound on |Ay|; at best, we can find upper bounds which are not always
exact.

In this paper, we describe two metrologically motivated methods for
improving the resulting upper bounds.
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