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Abstract

In his seminal book “The Star of Redemption”, the renowned philoso-
pher Franz Rosenzweig illustrated his ideas by the intuitive difference be-
tween mathematical statements A = B and B = A. Of course, from the
purely mathematical viewpoint, these two statements are always equiva-
lent, so to a person trained in mathematics – even in simple school math-
ematics – this illustration is puzzling. What we show is that from the
viewpoint of common folks, there is indeed a subtle difference between
how people understand these two equalities. To us, the understanding of
this difference helped us better understand Rosenzweig’s ideas. But we
believe that this difference has application way beyond those interested
in Rosenzweig’s philosophy: namely, it makes sense to take this subtle
difference into account when teaching mathematics in school.

1 Formulation of the Problem

Rosenzweig’s use of equality. In his seminar book “The Star of Redemp-
tion” [1], renowned philosopher and theologist Franz Rosenzweig spends a lot
of time explaining his concepts by comparing them to the difference between
mathematical statements A = B and B = A.

But what does this difference mean? Of course, from the purely mathemat-
ical viewpoint, this explanation makes no sense: in mathematics, the statement
A = B means exactly the same as B = A.

What we do in this paper. In this paper, we show that the difference men-
tioned by Rosenzweig makes sense if we consider not the precise mathematical
meaning of this formula, but rather our intuitive understanding of equality in
simple mathematics.

Why this may be interesting. Honestly, very few people are familiar with
Rosenzweig’s philosophy, so why is all this interesting? To us, this study was
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interesting because it enabled us to realize that there is a subtle difference
between people’s perception of statements A = B and B = A. Understanding
this intuitive difference may help teachers of mathematics.

The teachers may have had similar different understandings when they were
students themselves, but after studying math, they know that A = B and B = A
means exactly the same thing – so they may not take into account the difference
in student understanding when teaching.

2 Examples When There Is a Subtle Difference
Between A = B and B = A

First example. Suppose that we ask a student to solve an equation and to
find the value of the unknown x. Suppose also that the correct answer is x = 3.
In this case, if the student’s answer is x = 3, the teacher is happy.

But what if the student’s answer is 3 = x? From the purely mathematical
viewpoint, this is an equivalent form of the same correct answer, the student
did not make any mistake. However, intuitively, this does not sound exactly
right.

Why is this? We will discuss the difference after we present a few more
similar examples.

Second example. Suppose now that a teaches asks the students to multiply
2 and 3. The expected answer is 2 · 3 = 6.

From the purely mathematical viewpoint, this desired statement is equiva-
lent to 6 = 2 · 3, but intuitively, this answer – while mathematically correct –
does not sound as good.

So maybe a short part – like 6 here – should be in the right-hand side? Not
really, as our next example shows.

Third example. Suppose that a teacher asks the students to represent 6 as
the product of prime numbers. In this case, the expected answer is 6 = 2 · 3.

Again, from the purely mathematical viewpoint, this desired statement is
equivalent to 2 · 3 = 6, but, intuitively, this alternative answer does not sound
as good.

General explanation. In all these examples – and in most problems from
school mathematics – we have some quantity, and we want to represent in a
different form:

• in the first example, we know that there is a variable x, and we want to
find the numerical value of this variable;

• in the second example, we know that we are interested in the product 2 ·3,
and we want to find the numerical value of this product;

• in the third example, we know the number 6, and we want to represent
this number as a product.
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In all three example, the intuitive way of presenting the asnwer is:

• to place what we knew in the beginning in the left-hand side of the equality,
and

• to place the solution in the right-hand side of this equality.

In other words, when we write A = B, we mean that:

• we previously had some information about A, and

• later, it turned out that this quantity A is equal to the expression B.

This understanding can be summarized by the usual notation x =? (2 · 3 =?,
6 =?) that is used to formulate the problem.

In view of this understanding, the formulas A = B and B = A indeed have
different meanings, as was illustrated by the expressions 2 · 3 = 6 and 6 = 2 · 3:

• A = B means that we knew A, and now we learned that it is equal to B;
in the example 2 · 3 = 6, we knew that we need to multiply 2 by 3, and
we learned that the result is 6;

• on the other, B = A means that we knew B, and now we learned that it
is equal to A; in the example, 6 = 2 · 3, we knew the number 6, and now
we learned that it can be represented as the product of 2 and 3.

This understanding is somewhat related to assignment operation in
programming languages. In many programming languages such as C, C++,
Java, etc., the equal sign is not used to describe equality, it is used to describe
assignment.

In this case, the statement x = 3 means that to the variable x, we assign a
new value 3. From this viewpoint, 3 = x does not make any sense: the number
3 in the left-hand side is a constant, its value is fixed, we cannot assign any new
value to this constant.

Of course, this analogy is not perfect: not everything that makes sense in
a programming language makes sense in intuitive school math, and not every
difference between A = B and B = A makes sense in a programming language.

• For example, in a programming language we can write x = x + 1, which
means that we take the previous value of the variable x, add 1 to it,
and place the new value into the same variable x. This is not how we
understand equality in school mathematics; in school mathematics, the
statement x = x + 1 would make no sense.

• On the other hand, the difference between 6 = 2 · 3 and 2 · 3 = 6 is not
captured by the programming language analogy, since we cannot assign a
new value to a constant 6.
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