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Abstract. Empirical double-exponential formulas are known that describe how the amount of cracks and potholes in a pavement
grows with time. We show that these formulas can be explained based on natural symmetries (invariances) – such as invariance
with respect to changing the measuring unit or invariance with respect to changing a starting point for measuring time.

HOW THE AMOUNT OF CRACKS AND POTHOLES GROWS WITH TIME:
EMPIRICAL FORMULAS

Cracks and potholes

When a road is built, it is almost perfect – it has only miniature cracks and potholes, not worthy of these names.
However, as the road is used, cracks and potholes appear and start growing.

How transportation engineers usually gauge the amount of cracks and potholes

The amount of cracks is usually gauged the overall length C of the longitudal cracks outside the direct wheel path.
The amount of potholes is usually gauged by the total area P of potholes.
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As the road is used, the quality of the pavement deteriorates, and the values C and P grow. This growth starts at
some small values corresponding to the newly built road – age t = 0 – and continues growing until they reach the
maximum – the undesirable bad state when the whole road is covered by cracks and potholes.

Empirical formulas

According to [4], both growths are described by similar formulas:

C = aC · exp(−bC · exp(−cC · t)); (1)

P = aP · exp(−bP · exp(−cP · t)). (2)

What we do in this paper

We use natural symmetry ideas to provide a theoretical explanation for these empirical formulas.

SYMMETRY IDEAS: A BRIEF REMINDER

Natural transformations

In science and engineering, we are interested in the values of different physical quantities. We describe these quantities
in numerical form, but the numerical values of the corresponding quantities depend on the measuring unit – and for
some quantities such as temperature or time, also on the starting point.

If we change the measuring unit for length from meters to centimeters, then all numerical values are multiplied by
100: e.g., 2 m becomes 2 ·100 = 200 cm. In general, if we replace the original measuring unit with a new unit which
is λ times smaller, all numerical values are multiplied by λ : x→ X = λ · x. This numerical transformation is known
as scaling.

Similarly, if we start measuring time not from our year 0, but – as the French Revolution suggested – with the year
1789 when the revolution started, then from all year values, we should subtract 1789. In general, if we replace the
original starting point with the one which is x0 units before, then we add x0 to all numerical values: x→ X = x+ x0.
This numerical transformation is known as shift.

Natural symmetries

For most physical quantities, there is no fixed measuring unit – and sometimes no fixed starting point. It is therefore
reasonable to require that the dependencies y = f (x) between physical quantities also not depend on the choice of the
measuring unit (and possibly on the choice of the starting point). In physics, such invariance is called symmetry; see,
e.g., [3, 12].

Symmetries play a fundamental role in physics; they are also useful in explaining empirical facts about algorithms
– such as why certain activations functions are most efficient in neural networks, or why some operations are most
efficient in fuzzy logic; see, e.g., [5] and references therein. Symmetries have also been used to justify different
empirical formulas from pavement engineering; see, e.g., [2, 6, 7, 8, 9, 10, 11].

Of course, if we just change the unit and/or starting point for x, to keep the same formula true in the new units, we
may need to appropriately change the unit/starting point for y. For example, to preserve the formula d = v · t – that the
path is the product of speed and time – when we change the unit for time, we need to appropriately change the unit
for speed.

With this is mind, let us describe possible invariant dependencies.



Scaling-to-scaling (sc-sc)

Let us first consider the case when the dependence remains the same after we apply scaling both to x and to y. In
precise terms, we assume that for every λ > 0, there exists a value µ(λ ) (depending on λ ) such that if y = f (x), then
Y = f (X), where X = λ ·x and Y = µ(λ ) ·y. If we plug in the expressions for Y in terms of y and X in terms of x into
the formula Y = f (X), we conclude that f (λ · x) = µ(λ ) · y. Here, y = f (x), so we conclude that

f (λ · x) = µ(λ ) · f (x). (3)

It is known (see, e.g., [1]) that every measurable dependence f (x) with this property has the form

f (x) = A · xa, (4)

for some A and a.

Comment. The general proof is somewhat complicated, but for differentiable dependencies f (x) – and most physical
dependencies are differentiable – this is easy to prove. Indeed, if f (x) is differentiable, then the function µ(λ ) =
f (λ · x)

f (x)
is differentiable too. Thus, we can differentiate both sides of the equation (3) with respect to λ . As a result,

we get

x · f ′(λ · x) = µ
′(λ ) · f (x). (5)

In particular, for λ = 1, we get

x · d f
dx

= a · f , (6)

where a def
= µ ′(1). We can separate the variables x and f if we multiply both sides of the equality (6) by

dx
x · f

, then we

get

d f
f

= a · dx
x
. (7)

Integrating both sides, we get

ln( f ) = a · ln(x)+C, (8)

where C is the integration constant. Applying the function exp(z) of both sides of the equality (8), we get the desired
expression f (x) = A · xa, with A = exp(C).

Shift-to-scaling (sh-sc)

Let us consider the case when the dependence remains the same after we apply shift to x and scaling to y. In this
case, for every x0, there exists a value µ(x0) (depending on x0) such that if y = f (x), then we have Y = f (X), where
X = x+ x0 and Y = µ(x0) · y. If we plug in the expressions for Y in terms of y and X in terms of x into the formula
Y = f (X), we conclude that f (x+ x0) = µ(x0) · y. Here, y = f (x), so we conclude that

f (x+ x0) = µ(x0) · f (x). (9)

It is known (see, e.g., [1]) that every measurable dependence f (x) with this property has the form

f (x) = A · exp(a · x), (10)

for some A and a.

Comment. If f (x) is differentiable, then the function µ(x0)=
f (x+ x0)

f (x)
is differentiable too. Thus, we can differentiate

both sides of the equation (9) with respect to x0. As a result, we get

f ′(x+ x0) = µ
′(x0) · f (x). (11)



In particular, for x0 = 0, we get

d f
dx

= a · f , (12)

where a def
= µ ′(0). We can separate the variables x and f if we multiply both sides of the equality (6) by

dx
f
, then we

get

d f
f

= a ·dx. (13)

Integrating both sides, we get

ln( f ) = a · x+C, (14)

where C is the integration constant. Applying the function exp(z) of both sides of the equality (14), we get the desired
expression f (x) = A · exp(a · x), with A = exp(C).

Scaling-to-shift (sc-sh)

Let us now consider the case when the dependence remains the same after we apply scaling to x and shift to y. In
precise terms, we assume that for every λ > 0, there exists a value y0(λ ) (depending on λ ) such that if y = f (x), then
Y = f (X), where X = λ · x and Y = y+ y0(λ ). If we plug in the expressions for Y in terms of y and X in terms of x
into the formula Y = f (X), we conclude that f (λ · x) = y+ y0(λ ). Here, y = f (x), so we conclude that

f (λ · x) = f (x)+ y0(λ ). (15)

It is known (see, e.g., [1]) that every measurable dependence f (x) with this property has the form

f (x) = a · ln(x)+C, (16)

for some a and C.

Comment. If f (x) is differentiable, then the function y0(λ ) = f (λ · x)− f (x) is differentiable too. Thus, we can
differentiate both sides of the equation (15) with respect to λ . As a result, we get

x · f ′(λ · x) = y′0(λ ). (17)

In particular, for λ = 1, we get

x · d f
dx

= a, (18)

where a def
= y′0(1). We can separate the variables x and f if we multiply both sides of the equality (6) by

dx
x
, then we

get

d f = a · dx
x
. (19)

Integrating both sides, we get

f (x) = a · ln(x)+C, (20)

where C is the integration constant.



Shift-to-shift (sh-sh)

In this case, for every x0, there exists a value y0(x0) such that if y = f (x), then we have Y = f (X), where X = x+ x0
and Y = y+ y0(x0). If we plug in the expressions for Y in terms of y and X in terms of x into the formula Y = f (X),
we conclude that f (x+ x0) = y+ y0(x0). Here, y = f (x), so we conclude that

f (x+ x0) = f (x)+ y0(x0). (21)

It is known (see, e.g., [1]) that every measurable dependence f (x) with this property has the form

f (x) = a · x+C, (22)

for some a and C.

Comment. If f (x) is differentiable, then the function y0(x0) = f (x+ x0)− f (x) is differentiable too. Thus, we can
differentiate both sides of the equation (9) with respect to x0. As a result, we get

f ′(x+ x0) = y′0(x0). (23)

In particular, for x0 = 0, we get

f ′(x) = a, (24)

where a def
= y′0(0). Integrating, we get f (x) = a · x+C, where C is the integration constant.

SO HOW DOES CRACK OR POTHOLE AMOUNT DEPEND ON TIME

What we want: a brief reminder

We want to find the dependence of the quantity q (crack or pothole amount) on time t. We know:

• that the for t = 0, the value q(t) is small positive,

• that the value q(t) increases with time, and

• that the value q(t) tends to some large constant value when t increases.

What are possible symmetries here?

For crack amount C and for pothole amount P, there is an absolute starting point – 0, when we have no cracks and no
potholes. However, it makes sense to use different units of length and different units of area, so scaling makes perfect
sense.

For time, as we have mentioned, both shift and scaling make sense.

First idea

If view of the above analysis, let us see if any of the above symmetric dependencies satisfy the desired property.
Since for q, only scaling makes sense, we can only consider two possibilities: sc-sc and sh-sc. Let us consider them

one by one.



First idea: sc-sc case

In the sc-sc case, we have q(t) = A · ta. Since we want a non-negative value, we have to take A > 0. Since we want
q(t) to be increasing with time, we have to take a > 0. However, in this case:

• q(0) is zero – while we want it to be positive, and

• q(t) tends to infinity as t increases – while we want it to tend to some constant.

First idea: sh-sc case

In the sh-sc case, we have q(t) = A · exp(a · t). Again, since we want a non-negative value, we have to take A > 0.
Since we want q(t) to be increasing with time, we have to take a > 0. In this case:

• q(0) is positive, which is exactly what we wanted, but

• q(t) tends to infinity as t increases – while we want it to tend to some constant.

So what do we do?

The first idea does not work, so what should we do?
The above arguments about possible dependencies deal with the case when the quantity y directly depend on the

time t. However, in our case, cracks and potholes do not directly depend on time: what changes with time is stress,
which, in its turn, causes the pavement to crack. In other words, instead of the direct dependence of the quantity q on
time:

• we have q depending on some auxiliary quantity z, and

• we have z depending on time t.

For both dependencies q(z) and z(t) we can have symmetry-motivated formulas. Let us see which combinations of
these formulas provide the desired properties of the resulting dependence q(t) = q(z(t)) – that this value is positive
for t = 0, increases for t > 0, and tends to a finite limit when t→ ∞.

Possible options of the q(z) dependence

Since for q, only scaling is possible, for possible dependencies q(z), we have either the sc-sc option q(z) = A · za or
the sh-sc option q(z) = A · exp(a · z).

First option q(z) = A · za

In this option, when q(z) is sc-sc, it does not make sense to consider sh-sc or sc-sc options for z(t), since, as one can
check, this will be equivalent to sh-sc or sc-sc symmetry for q(t), and we have already shown that this is not possible.
So, to go beyond previously considered options, we need to consider two remaining options for z(t): sh-sh option
z(t) = a1 · t +C1, and sc-sh option z(t) = a1 · ln(t)+C1.

In the first case, we have q(t) = A · za = A · (a1 · t +C1)
a. We can equivalently describe it as q(t) = A1 · (t + c2)

a,

where A1 =A ·(a1)
a and c2 =

C1

a1
. The need to have positive values of q implies A> 0, the need to have q(t) increasing

leads to a > 0, but then, for t→ ∞, the resulting expression tends to infinity – while we want it bounded.
In the second case, we have q(t) = A · za = A · (a1 · ln(t)+C1)

a. Similarly to the first case, we can equivalently

describe this expression as q(t) = A1 · (ln(t)+c2)
a, with A1 = A · (a1)

a and c2 =
C1

a1
. The need to have positive values

of q implies A > 0, the need to have q(t) increasing leads to a > 0, but then, for t → ∞, the resulting expression also
tends to infinity – while we want it bounded.



Second option q(z) = A · exp(a · z)

In this option, when q(z) is sh-sc, it does not make sense to consider sh-sh or sc-sh options for z(t), since, as one can
check, this will be equivalent to sh-sc or sc-sc symmetry for q(t), and we have already shown that this is not possible.
So, to go beyond previously considered options, we need to consider two remaining options for z(t): sc-sc option
z(t) = A1 · ta1 , and sh-sc option z(t) = A1 · exp(a1 · t).

In the first case, q(t) = A · exp(a · z) = A · exp((a ·A1) · ta1). The need to have positive values of q implies A > 0.
The behavior of this expression depends on the sign of the product a ·A1.

• If a ·A1 > 0, then the need to have q(t) increasing leads to a1 > 0, but then, for t→ ∞, the resulting expression
tends to infinity – and we want it bounded.

• If a ·A1 < 0, then the need to have q(t) increasing leads to a1 < 0, but then, for t → 0, we have t−|a1| → ∞,
hence (a ·A1) · t−|a1|→−∞, and q(t) = A · exp((a ·A1) · t−|a1|)→ 0, but we want the value q(0) to be positive.

So, the only possible case is the second case, when

q(t) = A · exp(a · z) = A · ((a ·A1) · exp(a1 · t)),

which is exactly the desired formulas (1) and (2).

Conclusion

So, we can conclude that the only symmetry-motivated dependence q(t) for which q(0) > 0 and q(t) increases until
some finite number is the dependence (1) and (2). Thus, we have indeed justified the empirical dependencies (1)
and (2).
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