
University of Texas at El Paso University of Texas at El Paso 

ScholarWorks@UTEP ScholarWorks@UTEP 

Departmental Technical Reports (CS) Computer Science 

8-2020 

Why Cutting Trajectories Into Small Pieces Helps to Learn Why Cutting Trajectories Into Small Pieces Helps to Learn 

Dynamical Systems Better: A Seemingly Counterintuitive Dynamical Systems Better: A Seemingly Counterintuitive 

Empirical Result Explained Empirical Result Explained 

Olga Kosheleva 
The University of Texas at El Paso, olgak@utep.edu 

Vladik Kreinovich 
The University of Texas at El Paso, vladik@utep.edu 

Follow this and additional works at: https://scholarworks.utep.edu/cs_techrep 

 Part of the Applied Mathematics Commons, and the Mathematics Commons 

Comments: 

Technical Report: UTEP-CS-20-88 

Published in Applied Mathematical Sciences, 2020, Vol. 14, No. 13, pp. 653-658. 

Recommended Citation Recommended Citation 
Kosheleva, Olga and Kreinovich, Vladik, "Why Cutting Trajectories Into Small Pieces Helps to Learn 
Dynamical Systems Better: A Seemingly Counterintuitive Empirical Result Explained" (2020). 
Departmental Technical Reports (CS). 1499. 
https://scholarworks.utep.edu/cs_techrep/1499 

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UTEP. It has 
been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of 
ScholarWorks@UTEP. For more information, please contact lweber@utep.edu. 

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/cs_techrep
https://scholarworks.utep.edu/computer
https://scholarworks.utep.edu/cs_techrep?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1499&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1499&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1499&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/cs_techrep/1499?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1499&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu


Why Cutting Trajectories Into Small Pieces Helps

to Learn Dynamical Systems Better: A Seemingly

Counterintuitive Empirical Result Explained

Olga Kosheleva and Vladik Kreinovich
University of Texas at El Paso

500 W. University
El Paso, TX 79968, USA

olgak@utep.edu, vladik@utep.edu

Abstract

In general, the more information we use in machine learning, the more
accurate predictions we get. However, recently, it was observed that for
prediction of the behavior of dynamical systems, the opposite effect hap-
pens: when we replace the original trajectories with shorter pieces – thus
ignoring the information about the system’s long-term behavior – the ac-
curacy of machine learning predictions actually increases. In this paper,
we provide an explanation for this seemingly counterintuitive result.

1 Cutting Trajectories Into Small Pieces Helps
to Learn Dynamical Systems Better: A Seem-
ingly Counterintuitive Empirical Result

General idea. In general, the more information we use for learning, the better
the results of machine learning; see, e.g., [2, 3].

In some practical situations, we have a large amount of information, way
exceeding the computer’s ability to handle it. In such cases, we have to cut this
information into smaller handleable pieces.

This is, e.g., how we determine the structure of a DNA: we cut it into
smaller pieces, determine the structure of each of these pieces, and then try
to reconstruct the structure of the whole DNA from the structures of these
individual pieces; see, e.g., [1, 4].

However, in situations when it is possible to process the whole informa-
tion, usually, better learning results are obtained when we consider the whole
information.

A recent counterexample to the general idea. One of the things that
we want to learn is the dynamical equations that describe how a given system

1



evolves with time. We know the trajectories of this system, and we want to
extract the corresponding dynamical equations from these trajectories.

This is what Newton did when he analyzed trajectories of celestial bodies,
this is what physicists do when they try to find the corresponding dynamical
equations.

In precise terms, what we have is trajectories

xk = (xk(1), xk(2), . . . , xk(t), . . . , xk(Tk)), k = 1, 2, . . . (1)

that describe the state of the system xk(t) at different moments of time. In the
ideal world, to train the corresponding machine learning algorithm, we should
use, for each k and t, the tuple of the previous states

(xk(1), . . . , xk(t− 1)) (2)

as the input, and the state xk(t) as the output.
However, most real-life machine learning procedure require that all the train-

ing inputs be of the same size. With this in mind, we select some large value
t0, and for each desired output xk(t), use, as input, the tuple

(xk(t− t0), . . . , xk(t− 1)). (3)

This is possible, and we do get some reasonable predictions, as shown in
[5, 7]. However, surprisingly, as the same papers show, much better learning
was achieved when the authors cut the trajectory into smaller pieces

(xk(t), . . . , xk(t + h)), (4)

for some small h� t0 and all possible values t, and trained the network only on
these pieces (the authors call them bursts). In other words, to train the machine
learning algorithm, we use, as inputs, tuples

(xk(t), . . . , xk(t + h− 1)) (5)

corresponding to different values k and t, and for each such tuple, the desired
output is the corresponding value xk(t + h).

Why is this improvement in accuracy counterintuitive? When we divide each
trajectory into small bursts, we delete some information: namely, we only keep
information about the short-term dynamics, but we ignore information about
the long-term dynamics. According to the above general idea, this ignoring an
important part of information should make the results of machine learning worse
– but actually, the results of learning based on cut inputs are much better.

How can we explain this seemingly counterintuitive behavior?

2 Our Explanation

What determines the accuracy of predictions: a brief reminder. The
problem of determining parameters from observations is a typical problem in
statistics; see, e.g., [6].

2



In particular, it is well known that the more observations we have, the more
accurately we can determine the parameters – and thus, the more accurate is
the result of prediction that use these parameters. The usual rule of thumb is

that the standard deviation of the prediction error decreases as
1

√
nobs

, where

nobs is the number of observations.
It is also well known that the more parameters we need to determine, the

smaller the accuracy with which we can determine each parameter – and thus,
the less accurate is the result of predictions that use these parameters. In other
words, as the number of parameters npar increases, the prediction error also
increases.

Crudely speaking, in general, if we use nobs observations to determine npar

parameters, the resulting accuracy is equivalent to the case when these observa-

tions are divided into npar groups of
nobs

npar
observations each, so that each group

determines its own parameter. As a result, for each parameter, the standard
deviation of the estimation error is proportional to

1√
nobs

npar

=

√
npar

nobs
. (6)

Let us consider the above situation from this viewpoint.

What happens when we cut the trajectory into bursts. To analyze how
cutting changes accuracy, we need to analyze how cutting affects the number of
observations and the number of parameters.

Let us start with the number of observations. For each original trajectory k
of length Tk:

• we have nlong
obs = Tk − t0 + 1 examples of type (3), corresponding to

t = t0 + 1, t0 + 2, . . . , Tk, and

• we have ncut
obs = Tk − h + 1 examples of type (5), corresponding to

t = 1, 2, . . . , Tk − h.

We see that after cutting, we get slightly more examples, but – in view of the
1

√
nobs

-rule, not enough to explain the drastic improvement in accuracy.

Let us now consider the number of parameters. In the simplest case, when
we only consider linear dependencies, for long sequences, the general prediction
formula has the form

xk(t) = a0 + a1 · xk(t− 1) + . . . + at0 · xk(t− t0), (7)

with nlong
par = t0 + 1 parameters ai. For short sequences, we similarly have

xk(t + h) = a0 + a1 · xk(t + h− 1) + a2 · xk(th − 2) + . . . + ah · xk(t), (8)

3



with ncut
par = h + 1 parameters. Here, h� t0, so ncut

par = h + 1� t0 + 1 = nlong
par .

Thus, due to the formula (6), the use of bursts shall indeed drastically decrease
the estimation error – even in the linear case – by a factor of√

t0
h
. (9)

Of course, actual dependencies are non-linear – OK, some are linear, but in
the linear case, we do not need machine learning to describe the corresponding
dynamical system. To accurately describe a linear system, it is not sufficient
to use its linear approximation, we need to also take into account higher order
terms in the Taylor expansion. If we take into account quadratic terms, then
for long sequences, the general prediction formula will take the form

xk(t) = a0 +

t0∑
i=1

ai · xk(t− i) +

t0∑
i=1

t0∑
j=1

aij · xk(t− i) · xk(t− j), (10)

with nlong
obs ∼ t20 parameters, while for short sequences, we have

xk(t+h) = a0+

h∑
i=1

ai ·xk(t+h−i)+

h∑
i=1

h∑
j=1

aij ·xk(t+h−i) ·xk(t+h−j), (11)

with ncut
par ∼ h2 parameters. So, here, due to formula (6), the use of short bursts

decrease the prediction error by an even larger factor of

t0
h
. (12)

If we take into account all the terms up to some power p > 2, then we will
need ∼ tp0 parameters for long sequences and ∼ hp parameters for short bursts,
so the prediction error decreases by an even larger factor of(

t0
h

)p/2

. (13)

In all these cases, shorter bursts lead to much more accurate predictions –
exactly as it is observed.

Comment. On the qualitative level, the above arguments can be reformulated
as follows. We know that for a dynamical system, usually, its state in the next
moment of time depends only on the state in the few previous moments of time.
For example:

• For systems described by first order differential equations, the initial state,
in general, uniquely determines the next state – and thus, the whole tra-
jectory.

• For systems described by second order differential equations – like New-
ton’s equations – we need to know states at two moments of time, this
uniquely determines the trajectory, etc.

4



When we consider short bursts, we, in effect, take this knowledge (about
short-term character of the system’s dynamics) into account. However, when
we apply a general machine learning algorithm to long sequence, this knowledge
is lost. So, the machine learning algorithm, crudely speaking, unproductively,
looks at all possible dynamics – not necessarily short-term ones, and this ex-
plains why the use of long sequences leads to a much worse performance of the
machine learning algorithms.

Acknowledgments

This work was supported in part by the National Science Foundation grants
1623190 (A Model of Change for Preparing a New Generation for Professional
Practice in Computer Science), HRD-1834620 (CAHSI Includes), and HRD-
1242122 (Cyber-ShARE Center of Excellence).

References

[1] A. D. Baxevanis, G. D. Bader, and D. S. Wishart (eds.), Bioinformatics:
A Practical Guide to the Analysis of Genes and Proteins, Wiley, Hoboken,
New Jersey, 2020.

[2] C. M. Bishop, Pattern Recognition and Machine Learning, Springer, New
York, 2006.

[3] I. Goodfellow, Y. Bengio, and A. Courville, Deep Leaning, MIT Press, Cam-
bridge, Massachusetts, 2016.

[4] N. C. Jones and P. A. Pevzner, An Introduction to Bioinformatics Algo-
rithms, MIT Press, Cambridge, Massachusetts, 2004.

[5] T. Qin, K. Wu, and D. Xie, “Data driven governing equations approxima-
tion using deep neural networks”, Journal of Computational Physics, 2019,
Vol. 395, pp. 620–635.

[6] D. J. Sheskin, Handbook of Parametric and Non-Parametric Statistical Pro-
cedures, Chapman & Hall/CRC, London, UK, 2011.

[7] K. Wu and D. Xiu, “Numerical aspects for approximating governing equa-
tions using data”, Journal of Computational Physics, 2019, Vol. 384,
pp. 200–221.

5


	Why Cutting Trajectories Into Small Pieces Helps to Learn Dynamical Systems Better: A Seemingly Counterintuitive Empirical Result Explained
	Recommended Citation

	tmp.1600888607.pdf.kZVbN

