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How to Make Sure That Robot’s Behavior Is
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Abstract

In many applications – e.g., in health care – it is desirable to make
robots behave human-like. This means, in particular, that robotic con-
trol should not be optimal, it should be similar to human (suboptimal)
behavior. People’s decisions are based on bounded rationality: since we
cannot compute an optimal solution for all possible situations, we divide
situations into groups and come up with a solution appropriate for each
group. What is optimal here is the division into groups. It is therefore
desirable to implement a similar algorithm for robots. To help with such
algorithms, we provide techniques that help optimally divide situations
into groups.

1 Formulation of the Problem

Need for robots that look and act like humans: a brief reminder. In
many practical applications, it is desirable to have robots that look and act like
humans. For example, if we want to create a robot that takes care of small
children, it is desirable to have a human-like robot, to utilize the children’s nat-
ural affinity towards human beings and their natural fear of unusual creatures.
Similarly, a medical robot that looks and acts like a human will hopefully help
the patients to be somewhat more relaxed in an already stressful situation of an
illness. A robot that takes care of older people will sound warmer if this robot
is more human-like. And, of course, if something happens to a human operator
(e.g., human driver, human pilot, etc.), it would be great for the robot to be
able to fit into the control seat and take over.

What was the main challenge in the past. In the past, the main problem
was to make a robot look and behave like a human.

What is the main problem now. Nowadays, we have robots that look and
sometimes behave remarkably like humans – we have robotic TV announcers
that are difficult to distinguish from the real ones, robotic performers, etc.
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So now we face a different problem – that the robots can be made too good.
Their movements can be made optimal up to the minute detail, their decisions
can be made optimal. As a result, while these robots may look like humans,
they do not behave like humans – to be more precise, instead of behaving like us
humans, the robots behave like idealized never-making-a-mistake superhuman
beings.

Clarification: sometimes we do need superhuman robots. Robots with
superhuman abilities are definitely needed in many applications – we need robots
that can bravely go where humans cannot, that can explore space, rescue victims
of earthquakes, repair nuclear reactors.

In many other applications, we need more human-like robots. Having
superhuman ability in a humanoid robot defeats the very purpose of a humanoid
robot – to look and behave like a human.

Of course, we want this robot to act like a very good human – e.g., we
do not want a medical robot to make mistake on purpose. However, in their
movements, in their appearance, we do not want these robots to be perfect, we
want them to be like us. Misdiagnosing a patient is a big no-no, but why not
make a robot “accidentally” bump into a chair and slightly move it (as a human
being would) if this will make this robot (and thus, this robot’s advice) more
acceptable to the patients.

What we do in this chapter. In this chapter, we provide algorithmic foun-
dations that will (hopefully) help in designing such human-like robots.

2 Analysis of the Problem

Main idea. How can we simulate sub-optimality of human behavior? Ac-
cording to modern psychology, as discovered and emphasized by the Nobelists
Herbert Simon and Daniel Kahneman (in his collaboration with Amos Tversky),
this sub-optimality is mostly due to bounded rationality – i.e., to the fact that
we humans have limited ability to process information; see, e.g., [2].

Details. As a result, e.g., when optimizing, we do not exactly find the value
of the parameters for which the objective function attains its largest value –
instead:

• we first discretise the problem, by dividing the range of possible situations
(i.e., of possible values of the parameters) into finitely many subranges,
and

• then, in each subrange, we select a typical situation, and we find the
decision which is optimal for this typical situation; this decision will be
used for all situations from this subrange.

This is how we deal with most real-life problems; for example:

2



• in a big class, where individual approach is not realistically possible, an
instructor deals separately with A students (they need extra assignments),
with C students (they need encouragement), and with potentially failing
students (they need help);

• a medical doctor diagnoses a patient, and then prescribes the medicine
corresponding to this particular diagnosis and this particular group of
patients, etc.

How should we select subranges? Once we apply the same solution to all
the situations from a given subrange, our solutions become suboptimal. For
some divisions into subranges, we may have, in some situations, a big deviation
from optimality. For other divisions, the deviations are not that large.

It is reasonable to select a division which is optimal – in the sense that the
resulting decisions are as close to the optimal one as possible for the given fixed
number of subranges.

What we do in this chapter. In this chapter, we formulate the corresponding
optimization problem – of selecting the optimal division into subranges – in
precise terms, and provide a solution to this problem.

We will consider two possible cases:

• the case when we do not know the probabilities of different situations;
in this case, the natural way to gauge sub-optimality is by the worst-case
difference between the optimal and suboptimal values of the corresponding
objective function, and

• the case when we know the probabilities of different situations; in this
case, it is more natural to gauge sub-optimality by the average difference
between the optimal and suboptimal values.

Comment. Some of the corresponding mathematics will be similar to the one
used in the book [4] to describe human behavior. In particular, this book
shows that the idea of bounded rationality explains why humans use imprecise
(“fuzzy”) natural-language terms when making decisions, and why fuzzy control
– that takes these words into account – often performs better than a probabilistic
approach; see, e.g., [1, 3, 5, 6, 7, 8]. The explanation is that the fuzzy approach
implicitly takes into account not only the probability of different alternatives,
but also their utility.

The main difference of what we do in this chapter from the mathematical
analysis presented in [4] is that there, our main goal was to describe human
behavior, while here, the objective is to recommend (prescribe) the robot’s be-
havior.
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3 Case When We Do Not Know the Probabili-
ties of Different Situations

General description of the control situation. To describe a situation, we
need to describe the values of the quantities x = (x1, . . . , xn) that describe this
situation. For example, the state of a doctor’s patient can be described by the
patient’s body temperature, age, blood pressure, etc. The state of a student
can be characterized by the student’s grades on different assignments. The
state of a mobile robot can be characterized by the coordinates describing its
location and by the components of the velocity vector. If the robot has arms,
we should also describe the angles between different parts of the robot’s arm
and the corresponding angular velocities.

Not all possible combinations of parameters are usually realistically possible.
Let X denote the set of possible values of the tuples x.

To improve the situation, we can apply different controls. Control can also be
characterized by the values of the corresponding parameters u = (u1, . . . , um).
For example, we can slow down or speed up the robot, change its direction, lift
of lower its arm, etc.

We usually know the objective function, i.e., we know the gain G(x, u) that
we will get if we are in the state x, and we apply the control u. For example,
if the goal is for a robot to reach the patient within a certain period of time t0
(e.g., if the patient fell down), and the sooner the better, then G(x, u) is the
difference between t0 and the time that the robot in the original state x will
take to reach the patient after applying the control u.

In general, our objective is to maximize this gain.

Ideal case: optimal control. In the ideal case, for each situation x, we should
selected the optimal control uopt(x), i.e., control for which the gain is the largest:

G
(
x, uopt(x)

)
= max

u
G(x, u). (1)

Case of human-like behavior. In the case of human-like behavior, we divide
the range X into subranges Xj . In each subrange, we select a typical represen-
tative situation x(j), and apply the control uopt

(
x(j)

)
to all situations from the

subrange Xj .

How to describe the degree of sub-optimality. For each situation x ∈ Xj ,
the best we can do is to apply the control uopt(x) which is optimal for this
situation. Then, we will get the gain G (x, uopt(x)). Instead, we get the gain
G
(
x, uopt

(
x(j)

))
. The difference between these gains is equal to

∆Gj(x) = G
(
x, uopt(x)

)
−G

(
x, uopt

(
x(j)

))
. (2)

For a close-to-optimal control, the subranges are small, and all the situations
within each subrange are close to each other, so

x = x(j) + ∆x, (3)
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for some small ∆x, and, correspondingly,

uopt(x) = uopt
(
x(j)

)
+ ∆u, (4)

for some small ∆u. We can therefore substitute the expression

uopt
(
x(j)

)
= uopt(x)−∆u (5)

into the formula (2):

∆Gj(x) = G
(
x, uopt(x)

)
−G

(
x, uopt(x)−∆u

)
, (6)

expand this expression in Taylor series, and keep the largest non-zero terms in
this expansion. In general, we have

G
(
x, uopt(x)−∆u

)
= G

(
x, uopt(x)

)
−

m∑
i=1

∂G(x, u)

∂ui
·∆ui+

1

2
·

m∑
i=1

m∑
j=1

∂2G(x, u)

∂ui∂uj
·∆ui ·∆uj + . . . (7)

By definition (1) of the optimal control uopt(x), the function G(x, u) attains its
maximum at this control, so all the partial derivatives are equal to 0:

∂G(x, u)

∂ui
= 0, (8)

thus

G
(
x, uopt(x)−∆u

)
= G

(
x, uopt(x)

)
+

1

2
·

m∑
i=1

m∑
j=1

∂2G(x, u)

∂ui∂uj
·∆ui ·∆uj +. . . (9)

Substituting this expression into the formula (6), we conclude that the main
term in the difference (6) is quadratic:

∆Gj(x) = −1

2
·

m∑
i=1

m∑
j=1

∂2G(x, u)

∂ui∂uj
·∆ui ·∆uj . (10)

Here,

∆ui =

n∑
a=1

∂uopti (x)

∂xa
·∆xa. (11)

Thus, the formula (1) takes the form

∆Gj(x) =

n∑
a=1

n∑
b=1

cab,j ·∆xa ·∆xb, (12)
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where we denoted
cab,j = cab

(
x(j)

)
and

cab(x) =

m∑
i=1

m∑
j=1

∂2G(x, u)

∂ui∂uj |u=uopt(x)

· ∂u
opt
i (x)

∂xa
·
∂uoptj (x)

∂xb
. (13)

The overall quality of division into subranges is described by the worst-case
value of ∆Gj(x), i.e., by the value

max
j

max
x∈Xj

∆Gj(x). (14)

We want to find the division into subranges for which the quantity (14) is the
smallest possible.

Towards finding the optimal division into subranges. For each region Xj ,
let vj = max

x∈Xj

∆Gj(x) be the largest value of ∆G(x) for all points x ∈ Xj . Then,

it makes sense to assign, to this region, all the points x for which ∆Gj(x) ≤ vj
– adding these points to Xj will not increase the worst-case sub-optimality.

According to the formula (12), the value ∆Gj(x) is a quadratic function of
xa, so each region {x : ∆Gj(x) ≤ vj} is an ellipsoid. Thus, in the first crude
approximation, each subrange Xj is an ellipsoid whose axes are eigenvectors of
the matrix aij . However, these subranges needs to fill the whole space, so we
need to make them parallelepipeds with axes parallel to the axes of the ellipsoid
– i.e., to the eigenvectors of the matrix aij .

If for some j0, we have vj0 < max
j
vj , then we can increase the subrange

Xj0 and decrease the size (and thus, the values vj) for other subranges, thus
decreasing the value max

j
vj . Thus, in the optimal division into subranges, we

should have all values vj equal. Let us denote the common value of all these vj
by v.

What value v should we select? Suppose that we want to divide the whole
range X into N subranges. At each point x, the volume of the subrange contain-
ing x is the volume of the corresponding parallelepiped Xj . In the coordinate
system y1, . . . , yn formed by unit eigenvectors of the matrix cab, this matrix has
a diagonal form c′aa = λa and c′ab = 0 for a 6= b, where λa is the correspond-
ing eigenvalue of the original matrix cab. In these coordinates, the condition
∆Gj(x) ≤ v takes the form

∑
a
λa · (∆ya)2 ≤ v. Thus, each axis has half-length√

v

λa
and, correspondingly, length 2

√
v

λa
. The volume of the box Xj is equal

to the product of these lengths, i.e., to

2n · vn/2 ·
√√√√ 1∏

a
λa
. (15)
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The product of all the eigenvalues of a matrix is equal to its determinant, so∏
a
λa = det(cab). Thus, the volume of each subrange is equal to

v = 2n · vn/2 · 1√
det(cab)

. (16)

So, in a unit volume close to the point x, we have 1/v such subranges, i.e.,√
det(cab(x)) · 2−n · v−n/2 (17)

subranges. The overall number of subranges can be obtained if we add these
numbers over all unit-volume parts of the range X, i.e., if we consider the
integral ∫ √

det(cab(x)) · 2−n · v−n/2 dx. (18)

The number of subranges should be equal to N , so we conclude that∫ √
det(cab(x)) · 2−n · v−n/2 dx = N, (19)

and thus, that

vn/2 =
2−n

N
·
∫ √

det(cab(x)) dx, (20)

so

v =
1

4 ·N2/n
·
(∫ √

det(cab(x)) dx

)2/n

. (21)

Thus, we arrive at the following optimal division into subranges.

Solution: optimal division into subranges. Suppose that we can have N
subranges. Then, we compute the value v by using the formula (21), where the
matrix cab(x) is determined by the formula (13). This value v is the largest
possible difference between the optimal and suboptimal values of the objective
function G(x, u).

The corresponding subranges have the following form. Around each point
x, we find the unit eigenvectors and eigenvalues λa of the matrix cab(x). In the
local coordinate system y1, . . . , yn formed by the unit eigenvectors, the subrange
Xj is the following box:[

y
(j)
1 −

√
v

λ1
, y

(j)
1 +

√
v

λ1

]
× . . .×

[
y(j)n −

√
v

λn
, y(j)n +

√
v

λn

]
. (22)

4 Case When We Know the Probabilities of Dif-
ferent Situations

Description of the case. Suppose that we also know the relative frequency of
different situations, i.e., we know the probability density function ρ(x) describing
how frequently we will encounter different situations.
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Analysis of the problem. In this case, as one can show, locally, we have a
similar division. The difference is that instead of the same value vj for all the
subranges, we may have different values v(x) for different subranges: to decrease
the average measure of difference ∆Gj(x), it makes sense to make it larger for
scarcely populated subranges and smaller for densely populated subranges.

Once we know v(x) for each x, we can determine the corresponding division
into subranges. So, the main remaining problem is finding the optimal function
v(x). The main constraint is the overall number N of subranges, which, similar
to formula (19), has the form

2−n ·
∫ √

det(cab(x)) · (v(x))−n/2 dx = N. (23)

Under this constraint, we want to minimize the average difference ∆G(x). For
each subrange, the average difference is proportional to v(x), so minimizing the
average difference is equivalent to minimizing the average values of v(x):∫

ρ(x) · v(x) dx→ min . (24)

By using the Lagrange multiplier method, we can reduce this constraint
optimization problem to the unconstrained problem of minimizing the functional∫

ρ(x) · v(x) dx+ λ ·
(

2−n ·
∫ √

det(cab(x)) · v(x)−n/2 dx−N
)
, (25)

where λ is the Lagrange multiplier. Differentiating this expression with respect
to v(x) and equating the derivative to 0, we conclude that

ρ(x)− λ · 2−n · n
2
·
√

det(cab(x)) · (v(x))−n/2−1 = 0, (26)

i.e., that:

(v(x))−n/2−1 = C · ρ(x)√
det(cab(x))

, (27)

where we denoted

C
def
=

1

λ · 2−n · n
2

. (27)

Thus,

(v(x))−n/2 =
(

(v(x))−n/2−1
)n/(n+2)

=

Cn/(n+2) · (ρ(x))n/(n+2)(√
det(cab(x))

)n/(n+2)
. (28)

Substituting this expression for (v(x))−n/2 into the formula (23), we conclude
that

2−n · Cn/(n+2) ·
∫

(ρ(x))n/(n+2) · (det(cab(x)))1/(n+2) dx = N, (29)
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hence

Cn/(n+2) =
2n ·N∫

(ρ(x))n/(n+2) · (det(cab(x)))1/(n+2) dx

, (30)

and

C =
2n+2 ·N1+2/n(∫

(ρ(x))n/(n+2) · (det(cab(x)))1/(n+2) dx

)1+2/n
. (31)

From (27), we can then conclude that

v(x) =
(det(cab(x)))1/(n+2)

C2/(n+2) · (ρ(x))2/(n+2)
. (32)

So, we arrive at the following solution.

Solution: optimal division into subranges. First, we compute the auxiliary
value C by using the formula (31). Then, the corresponding subranges have
the following form. Around each point x, we find the unit eigenvectors and
eigenvalues λa of the matrix cab(x). In the local coordinate system y1, . . . , yn
formed by the unit eigenvectors, the subrange Xj is the following box:y(j)1 −

√
v(x)

λ1
, y

(j)
1 +

√
v(x)

λ1

× . . .×
y(j)n −

√
v(x)

λn
, y(j)n +

√
v(x)

λn

 , (33)

where v(x) is determined by the formula (32).
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