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Euclidean Distance Between Intervals Is the Only

Representation-Invariant One∗

Olga Kosheleva and Vladik Kreinovich†

University of Texas at El Paso
El Paso, TX 79968, USA

olgak@utep.edu,vladik@utep.edu

Abstract

An interval can be represented as a point in a plane, e.g., as a point
with its endpoints as coordinates. We can thus define distance between
intervals as the Euclidean distance between the corresponding points. Al-
ternatively, we can describe an interval by its center and radius, which
leads to a different definition of distance. Interestingly, these two defini-
tions lead, in effect, to the same distance – to be more precise, these two
distances differ by a multiplicative constant. In principle, we can have
more general distances on the plane. In this paper, we show that only
for Euclidean distance, the two representations lead to the same distance
between intervals.

Keywords: interval uncertainty, distance between intervals, metrics on the plane
AMS subject classifications: 65G30, 65G40

1 Formulation of the Problem

Need for interval uncertainty. Most information about physical quantities comes
from measurements, and measurements are never absolutely exact: the actual (un-
known) value x of a physical quantity is, in general, different from the measurement
result x̃.

In many real-life situations, the only information that we have about the measure-

ment error ∆x
def
= x̃−x is the upper bound ∆ on its absolute value: |∆x| ≤ ∆. In this

case, based on the measurement result, the only information that we gain about the
actual value x is that this value is somewhere in the interval [x, x], where x = x̃ −∆
and x = x̃ + ∆; see, e.g., [2, 4, 5, 6].

Two representations of intervals. In line with the discussion above, we have two
natural representations of an interval:
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• we can represent an interval by its midpoint x̃ and radius (half-width) ∆;

• alternatively, we can represent an interval by its endpoints x = x̃ − ∆ and
x = x̃ + ∆.

It is important to gauge the distance between intervals. In many practical
situations, we are interested in the value of a quantity y which is not easy to directly
measure – e.g., we are interested in future values of some quantities. To estimate these
values, we:

• find easier-to-measure quantities x1, . . . , xn which are related to the desired
quantity y by a known relation y = f(x1, . . . , xn),

• measure these quantities xi, and

• use the measurement results (and the known relation) to estimate y.

As we have mentioned, often, based on the measurement results, the only informa-
tion that we get about the actual (unknown) value of each quantity xi is the interval
[x1, xi] that contains this value. In this case, the only information that we can gain
about the desired quantity y is that it belongs to the corresponding set

{f(x1, . . . , xn) : x1 ∈ [x1, x1], . . . , xn ∈ [xn, xn]}. (1)

For a continuous function f(x1, . . . , xn), this set is also an interval. The problem of
computing this interval is known as the problem of interval computation; see, e.g.,
[2, 4, 5].

It is known that this problem is, in general, NP-hard (see, e.g., [3]), which means
that – unless it turns out that P=NP – no feasible algorithm is possible that would
always compute the exact endpoints of the interval (1). In situations when we cannot
compute the desired interval exactly, we can only compute an approximation to this
interval. To understand how good is this approximation, it is important to have a
natural way to define the distance between two intervals.

Two natural representations lead to two natural definitions of the distance
between intervals. If we represent an interval by a pair (x̃,∆), then it is natural
to define the distance between two intervals as the Euclidean distance between the
corresponding 2-D points

d((x̃1,∆1), (x̃2,∆2)) =
√

(x̃1 − x̃2)2 + (∆1 −∆2)2. (2)

On the other hand, if we represent an interval by its endpoints (x, x), then it is natural
to define the distance between two intervals as the Euclidean distance between the
corresponding 2-D points:

D((x1, x1), (x2, x2)) =
√

(x1 − x2)2 + (x1 − x2)2. (3)

The two metrics differ by a multiplicative constant. The two metrics differ by

a multiplicative constant. Indeed, if we denote a
def
= x̃1 − x̃2 and b

def
= ∆1 −∆2, then

these distances are given by

d =
√

a2 + b2 (4)

and
D =

√
(a− b)2 + (a + b)2. (5)
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The expression under the square root is equal to

(a− b)2 + (a + b)2 = 2(a2 + b2), (6)

thus D =
√

2 · d.
Instead of distances, we can consider their squares d2 and D2, then we have

D2 = 2d2. (7)

Comment. In addition to the above two natural representations, it is possible to have
other representations of intervals. For example, we can represent an interval [x, x] by:

• its lower endpoint x, and

• either 1) its width x− x = 2∆ or 2) its half-width ∆.

In these representations, the corresponding Euclidean distances

d1((x1, x1), (x2, x2)) =
√

(x1 − x2)2 + (2∆1 − 2∆2)2 =
√

(a− b)2 + 4b2 =√
a2 − 2a · b + 5b2 (8)

and

d2((x1, x1), (x2, x2)) =
√

(x1 − x2)2 + (∆1 −∆2)2 =
√

(a− b)2 + b2 =√
a2 − 2a · b + 2b2 (9)

are different from the distances d and D based on the natural representations.

Natural question. In the 2-D plane, instead of the square of the Euclidean distance
(x1 − x2)2 + (y1 − y2)2, we can consider more general expressions

f(x1 − x2) + f(y1 − y2), (10)

for some even function f(X) which is increasing for x ≥ 0. For example, for f(X) =
|x|p, we get `p-distance.

A natural question is: for which functions f(X), the values of corresponding f -
distance (10) corresponding to two representations of an interval always differ by a
multiplicative constant?

What we do in this paper. In this paper, we prove that the only functions f(X)
with this property are functions of the type f(X) = c · x2 corresponding to the usual
Euclidean distance.

2 Main Result

Discussion. In terms of the above-defined differences a and b, the desired property
has the following form:

f(a + b) + f(a− b) = C · (f(a) + f(b)). (11)
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Theorem. The following two conditions are equivalent:

• f(X) is an even function which is strictly increasing for x ≥ 0 and for which
there exists a constant C for which (11) holds for all a and b;

• f(X) = c · x2 for some constant c > 0.

Comment. Our functional equation is somewhat similar to Cauchy’s functional equa-
tion

f(a + b) = f(a) + f(b); (12)

see, e.g., [1] – and our proof is motivated by Cauchy’s proof that the only continuous
solutions to the functional equation (12) are linear functions f(X) = k · x.

This analogy raises several open questions: in our result, can we replace mono-
tonicity with continuity? do we need to require evenness? It would be interesting to
find answers to these questions.

Proof.

0◦. Clearly, the function f(X) = c · x2 is an even function which is strictly increasing
for x ≥ 0 and for which there exists a constant C = 2 for which (11) holds for all a
and b.

So, to prove the proposition, it is sufficient to prove that if a function f(X) is
an even function which is strictly increasing for x ≥ 0 and for which there exists a
constant C for which (11) holds for all a and b, then f(X) = c ·x2 for some c > 0. Let
us now assume that f(X) is such a function.

1◦. Let us first prove that C = 2 and f(0) = 0.
Indeed, for b = 0, the formula (11) takes the form 2f(a) = C · (f(a) + f(0)), i.e.,

the form (2 − C) · f(a) = C · f(0). We cannot have C 6= 2 since then the expression
(2 − C) · f(a) would be either increasing or decreasing and will not be equal to a
constant C · f(0). Thus, C = 2 and hence, f(0) = 0. For C = 2, the equality (11) take
the form

f(a + b) + f(a− b) = 2(f(a) + f(b)). (13)

2◦. Let us prove, by induction, that for every n ≥ 1, we have

f(n · a) = n2 · f(a). (16)

Indeed, for n = 1, this is trivially true. So, we have the induction base.
Let us now prove the induction step. Let us assume that we have proved (16) for

all n = 1, . . . , k, let us prove that this equality holds for n = k + 1 as well. For this,
let is take b = k · a. Then, the formula (13) takes the form

f((k + 1) · a) + f((k − 1) · a) = 2(f(a) + f(k · a)),

hence

f((k + 1) · a) = 2(f(a) + f(k · a))− f((k − 1) · a). (15)

We already know that

f(k · a) = k2 · f(a), (16)

and that

f((k − 1) · a) = (k − 1)2 · f(a). (17)
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Substituting (16) and (17) into (15), we get

f((k + 1) · a) = 2(f(a) + k2 · f(a))− (k − 1)2 · f(a) = (2 + 2k2 − (k − 1)2) · f(a) =

(2 + 2k2 − k2 + 2k − 1) · f(a) = (k2 + 2k + 1) · f(a) = (k + 1)2 · f(a). (18)

So, by induction, the formula (14) is indeed true for all n.

3◦. Let us now prove that
f(r) = c · r2 (19)

for all rational numbers r =
p

q
.

Indeed, for n = q and a =
1

q
, the formula (14) implies that

f(1) = q2 · f
(

1

q

)
, (20)

hence

f

(
1

q

)
= c ·

(
1

q

)2

, (21)

where we denoted c
def
= f(1).

Now, for n = p and a =
1

q
, the formula (14) implies that

f

(
p

q

)
= p2 · f

(
1

q

)
. (22)

Substituting the expression (21) for f

(
1

q

)
into the formula (22), we conclude that

f

(
p

q

)
= c ·

(
p

q

)2

. (23)

The statement is proven.

4◦. To complete the proof, we need to show that the formula f(X) = c · x2 holds for
all real values x ≥ 0. Indeed, for each q, each real number can be approximated, from
below and from above, by fractions

p(q)

q
≤ x ≤ p(q) + 1

q
, (24)

where p(q)
def
= bq · xc. Since the function f(X) is increasing for x ≥ 0, we have

f

(
p(q)

q

)
≤ f (x) ≤ f

(
p(q) + 1

q

)
. (25)

Due to Part 3 of this proof, we have

c ·
(
p(q)

q

)
≤ f (x) ≤ c ·

(
p(q) + 1

q

)2

. (26)

In the limit q → ∞, both the left- and the right-hand sides of this double inequality
tend to c · x2, this indeed f(X) = c · x2 for all x ≥ 0.

Since the function f(X) is even, this equality is true for all r. The proposition is
proven.
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