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Adversarial Teaching Approach to Cybersecurity:
A Mathematical Model Explains Why It Works Well

Christian Servin
Computer Science and
Information Technology Systems Department
El Paso Community College (EPCC)
919 Hunter Dr., El Paso, TX 79915-1908, USA
cservinl @epcc.edu

Abstract—Teaching cybersecurity means teaching all possible
ways how software can be attacked — and how to fight such
attacks. From the usual pedagogical viewpoint, a natural idea
seems to be to teach all these ways one by one. Surprisingly,
a completely different approach works even better: when the
class is divided into sparring mini-teams that try their best to
attack each other and defend from each other. In spite of the
lack of thoroughness, this approach generates good specialists
— but why? In this paper, by analyzing a simple mathematical
model of this situation, we explain why this approach work —
and, moreover, we show that it is optimal in some reasonable
sense.

Keywords—Teaching cybersecurity, adversarial teaching, opti-
mal teaching.

I. FORMULATION OF THE PROBLEM

Cybersecurity is important. In the modern world, every-
thing relies on computers — even more so with the current
COVID’19 pandemic. Computers run our communications,
computers control our utilities, computers largely control our
planes, cars, etc. For our civilization to continue to function,
it is important to protect all these computer systems from
malicious attacks.

Teaching cybersecurity is important. Whatever automatic
tools we place in to prevent cyber-attacks, smart adversaries
learn to overcome. The only way to maintain cybersecurity
is to train a large corpus of specialists who would protect us
from all the newly appearing threats.

Traditional way to teaching — in particular, to teaching
cybersecurity. The usual way of teaching any material is to
present, to the students, the needed information and skills.
With respect to cybersecurity, this means explaining, to the
students, the main types of cyber-attacks and the main ways to
defend against these attacks. After that, we can let the students
show their creativity, but usually, teaching the basics is a must.

Adversarial teaching: a successful alternative approach.
Interesting, lately, a different approach has been very popular
and very successful, in which, instead of teaching students
the usual way, the instructor divides the class into one or
more pairs of sparring mini-teams. In each pair, the teams
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interchangingly try to attack each other and to defend their
team from a partner’s attacks; see, e.g., [2], [3].

This works, but why? The above strategy works, which is
somewhat surprising. In the absence of a thorough coverage
of all possible topics, one would expect gaps in the ability of
students who have been taught this way — but there are usually
no such gaps. So, the first question is: why this approach
works?

A natural second question: is this approach close to optimal
or we can drastically further improve it — and if yes, how?

What we do in this paper. In this paper, we answer both
questions: we explain why the adversarial teaching approach
works, and we show that this approach is — in some reasonable
sense — optimal.

II. ANALYSIS OF THE PROBLEM

Similar approach works in design. For teaching, this ap-
proach may be somewhat new, but a similar approach works
in military engineering. For example, according to [7], new
fighter planes are designed as follows (by using a program
that simulates dogfights between different planes):

The first stage is natural: we consider several possible
designs, and for each of them, we simulate how this design
will perform in a possible confrontation with the fighter planes
used by the existing adversaries. We continue doing this until
we find a design that can beat all the possible opponents.

At first glance, this may seem to be sufficient, but, on second
thought, it is not: it is not enough for a future plane to be better
that what the opponent has now, we need to have a design that
will be better than what the opponent will have in the future.

To design such a plane, we perform the second stage of
the design process: namely, we design a plane that will be
better than not only the current planes, but also better than
our first-stage design.

Then, we design a plane that will be better than the second-
stage design, etc. At the end, we get an almost perfect future
plane — and this is what is then implemented and tested.

What can we conclude from this fact. The fact that a
similar idea works successfully in such completely different
application areas as teaching cybersecurity and designing



fighter planes makes us confident that these successes are not
due to any specific features of these areas, they are due to the
general structure of this approach. Let us therefore describe a
simple mathematical model that would capture this structure.

Comment. We are not specialists in plane design, but, as
educators, we are clearly more familiar with educational
applications. So, while the model will be potentially general,
we will illustrate it on the example of teaching — namely, on
the example of teaching cybersecurity.

Towards a model. We want the students to be able to handle
all possible attack situations. Of course, different situations are
all somewhat different, but ideally, what we want is to make
sure that whatever new situation surfaces, the students should
have some experience successfully fighting a similar attack in
the past, experience that would help the student fight the new
attack as well.

In mathematics, a natural way to describe similarity is by
assuming that there is a some metric d(a,b) on the set S
of possible situations, a metric that describes to what extent
situations a and b are different from each other — or similar to
each other. The smaller the distance d(a, b), the more similar
are situations @ and b.

In these terms, “similar” means that the distance d(a,b) is
smaller than or equal to some small threshold value € > 0.

Therefore, we arrive at the following model.

III. RESULTING MODEL: WHAT WE HAVE AND WHAT WE
WANT

Resulting model. The above requirement can be formulated
as follows. We have a set S of possible situations. On this set,
we have a metric d(a, b).

We want the student to experience situations sy, . . ., S, such
that every situation s from the set S is e-close to one of such
situations.

Comments.

« In mathematics, such a set is known as an e-net; see,
e.g., [5], [6].

o The exact value of the threshold is determined by our
resources: the smaller ¢, the better — but a drastic decrease
in € would mean a drastic increase in situations experi-
enced during teaching, and the teaching time is limited.

How do we compare quality of different teaching schemes.
In view of the previous comment, once we fix € > 0, a natural
measure of quality is the number of experiences situations n:
the smaller n, the faster we can train.

Alternatively, we can fix n — and thus, the training time —
and try to find the situations sy, . .., s, that lead to the smallest
possible e.

Comment. For each metric space, the smallest possible number
of elements in an e-net is called e-entropy; to be more precise,
usually the logarithm of this smallest number is called the e-
entropy; see, e.g., [5], [6].

The corresponding optimization problem is known to be
NP-hard. It is known that problem of finding the smallest &-
net is, in general, NP-hard; see, e.g., [1]. This means, crudely
speaking, that unless P = NP (which most computer scientists
believe to be false), no feasible algorithm is possible that
would always find the optimal e-net.

IV. ADVERSARIAL TEACHING REFORMULATED IN TERMS
OF THE MODEL: FORMULATION AND ANALYSIS

Let us reformulate adversarial teaching in these terms.
The first team starts with some attack situation s;. Then, the
sparring team learns how to defend against this attack. So, next
time, the attacking team will try to find a new way of attacking
that has the most chances of success — i.e., the situation so
which is as far away from the original situation s; as possible:

d(s2,81) = I?Eaé(d(&sl). (1)

Once the sparring team learns how to deal with the situation
so as well, the next attacking situation s3 will be as far away
from both s; and s, as possible, i.e., for which the distance

d(s, {s1,52)) € min(d(s,s1),d(s,2))  (2)
is the smallest possible:

min(d(ss, 1), d(ss, $2)) =

max (min(d(s, s1),d(s, $2))) - (3)
se
In general, once we have experiences the situations
S1,...,Sk, we select the next situation siy; for which
min(d(sg, 1), ..., d(Sk, Sk—1)) =
max (min(d(s, 81),--.,d(s,S$x-1))) - (4)
se

We continue until this way, we can find a situation which
is different from all the previous ones — i.e., for which
d(sk, s;) > ¢ for all i < k.

When this is no longer possible, i.e., when we have

max (min(d(s, 81),...,d(s,s,))) < ¢, (5)
we stop.

This strategy works: a proof. There are only finitely many
possible situation — e.g., since each situation has to be de-
scribed in a reasonable time and thus, contain a reasonable
number of characters /N to describe, and for each N and
for each set of possible symbols, we have a finite number
of strings of this (or smaller) length.

At each iteration, we generate a situation which different
from all the previous once. Thus, eventually, the above process
will stop.

Let us show that the resulting set of situations $1,..., Sy,
indeed satisfies the desired property — that every situation s €
S is e-close to one of the situations s;.

Indeed, the formula (5) means that for every situation s € S,
we have

min(d(s, s1),...,d(s,sn)) <¢, (6)



which, in its turn, means that for every situation s € S, there
exists a situation 4 for which d(s, s;) < e.

This strategy is asymptotically optimal: formulation. Let n
be the number of situations that the students have experienced
by following this strategy. As we have mentioned earlier,
because the strategy is feasible and the problem is NP-hard,
we cannot expect that for this number n, the threshold ¢ is
optimal. It is thus possible that, in principle, with the same
number n, we can reach a smaller value £’

What we can prove, however, is that this decrease cannot
be too drastic: namely, we will prove that even for one fewer
(n—1) situation, the corresponding optimal value ¢’ is at best
twice smaller, i.e., that &’ > /2.

This strategy is asymptotically optimal: a proof. Let us
prove this optimality result by contradiction.
Indeed, by our construction, we have

d(si,sj) > € (7)

for all ¢ # j. Suppose that we have a &'-net s),...,s),_;.
By definition a ¢’-net, each element s; is €’-close to some
element s’e(i).

For i # j, we cannot have e(i) = e(j): otherwise, we will

have
d(siy85) < d(siySe;) + d(s), 8e;) < 26" <e, (8)

which contradicts (7). Thus, to each of the n elements s;, we
assign a different element s; — but this is impossible, since
we assumed that we only have n — 1 elements e;.

The optimality is thus proven.

V. GRAPHICAL ILLUSTRATION

To make it easier to understand, let us give two simple
geometric illustrations of the above idea. These examples are
similar to examples provided in [4] for a different application
of a similar idea — to selecting benchmarks for testing different
numerical algorithms.

1D example. Let us start with the simplest example of a metric
space S — namely, the interval [0, 1]:

0 172 1
It is reasonable to select the midpoint 1/2 as sy:

NI

X

0 172 1
There are two points that are the farthest from s;: the left
endpoint 0 and the right endpoint 1. Without losing generality,
let us select so = 0:

X X
0 172 1

Now, s3 = 1 is the point with the largest value of

d(s,{s1,s2}) = min(d(s, s1),d(s, s2)) :

X X X
0 172 1

At this stage, the midpoints between 0 and 1/2 and be-
tween 1/2 and 1 are the farthest from the set {s1, 2,83} =
{0,1/2,1}, so, after two stages, we add them both:

X X X X X
0 1/4 172 3/4 1

Now, the largest possible value of
d(s,{s1,s2,3,84,85}) = d(s,{0,1/4,1/2,3/4,1})

is 1/8. So, at the next stage, we add one of the points in
between the existing ones, e.g., the first one (1/8):

X—X—X X X X
0 18 1/4 172 3/4 1

After three more stages, we add all midpoints, so we arrive at
the following configuration:

X—X—X——X——X—X—X—X—X
0 /8 /4 3/8 172 5/8 3/4 /8 1

2D example: square. For a unit square, we get a similar
situation. First, let us pick the midpoint as s;:

Then, the next four selections s; are the vertices:

1 1

N \

After this, the next four selected points s; are he midpoints of
the four edges:

h v
X




Here, we have, in effect, four sub-squares. On the next stage,
the same procedure is repeated for each sub-square, etc.

X { XX XXX

X X X X X X X

X X X X X X X X
X X X X X X X

X X XX XXX

VI. WHAT NEXT?

What we did. In this paper, we provided a simplified mathe-
matical model that explains why adversarial teaching works —
and show that, in some reasonable sense, adversarial teaching
is indeed a close-to-optimal teaching strategy.

The existence of such an explanation made us (and will
hopefully make others) more confident that this method is a
right one.

Can we do better? Teaching with more confidence is good,
but it would nice to have a model that helps us teach better.

For this, we need a more realistic model. Such model should
take into account that some attacks are more difficult to defend
against, while others are easier. Such models should take into
account that in adversarial teaching, it is often not individual
against individual, but rather a team against a team — so we
need to take into account team dynamics, etc.

We hope that our simplified model will provide a starting
point for developing such more realistic models.

How to motivate? This paper presents a mathematical demon-
stration of how adversarial learning can be beneficial for
teaching cybersecurity topics. But how to make sure that
adversarial learning is beneficial?

In this paper, we concentrated on the technical part, on what
to teach — implicitly assuming that students have the needed
motivation (and, of course, the needed background).

In reality, while some students are always eager to learn,
but for other students, it is important to keep them motivated.
In our experience, when properly organized, competitive en-
vironments like hackathons are great motivators — but, on the
other hand, pedagogy teaches us that many students do not
perform well in competitive environments.

How to best motivate students remains an important open
problem.
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