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Abstract—In many practical situations, we need to reconstruct
the dependence between quantities x and y based on several
situations in which we know both x and y values. Such problems
are known as regression problems. Usually, this reconstruction
is based on positive examples, when we know y – at least, with
some accuracy. However, in addition, we often also know some
examples in which we have negative information about y – e.g., we
know that y does not belong to a certain interval. In this paper,
we show how such negative examples can be used to make the
solution to a regression problem more accurate.

Keywords—Negative examples, regression, interval uncertainty,
fuzzy uncertainty, probabilistic uncertainty.

I. USING NEGATIVE EXAMPLES IN REGRESSION:
FORMULATION OF THE PROBLEM

What we do in this section. The main objective of this section
is to motivate the need for our research.

For this purpose, we review the well-known notions such as
regression, machine learning, classification, etc. – and while
recalling these basic notions, we try our best to explain how the
usual motivation for these notions and related ideas naturally
lead to the need to consider negative examples.

What we want: a general description. From the practical
viewpoint, in a rough approximation, the main objective of
science is to enable people to predict what will happen in the
world. (To be more precise, some people define the goal of
the science as discovering the laws of nature, with prediction
as a result of it.)

The main objective of engineering is to find out what
changes we need to make in the world to make it better. To
select the appropriate changes, we need to be able to predict
how each possible change will affect the world.

Thus, in both cases, we need to be able, given the initial
conditions x (which include the information about the change),
to predict the value of each quantity y characterizing the future
state.

Comment. In general, the quantity y can take all possible real
values – or all the values from some finite or interval interval.
Such quantities are called continuous.

In some case, possible values of y are limited to some
discrete set: e.g., electric charges are all proportional to the
elementary charge. The corresponding quantities are called
discrete. In this paper, we concentrate on the general case
of continuous quantities, but our ideas and formulas can be
easily extended to the discrete cases as well. For example, for
discrete quantities, in the case of probabilistic uncertainty:
• instead of the probability density function (pdf), we

can use its discrete analogue – probabilities of different
values, and

• instead of the integral of the pdf being equal to 1, we
will have the sum of the probabilities equal to 1.

Often, we do not know the dependence of y on x. In some
cases – e.g., in celestial mechanics – we know the equations
(or even explicit formulas) that relate the available information
x and the desired quantity y. In such cases, in principle, we
have an algorithm for predicting y.

In some situations, this algorithm may not be practical. For
example, the fastest we can reasonably reliably predict where
the tornado will go in the next 15 minutes is after several hours
of computations on a high-performance computer – which
makes these computations useless. However, as computers
get faster and faster, we will eventually be able to make the
corresponding computations practical.



In many other situations, however, we do not know how y
depends on x. In such situations, we need to determine this
dependence based on the known examples

(
x(k), y(k)

)
of past

situations, in which we know both x and y.

Comment. Of course, this knowledge comes from measure-
ments, and measurements are never absolutely accurate. So, in
reality, instead of knowing the exact value y, we usually know
an interval containing y (see, e.g., [3], [8], [10], [15]), and
sometimes a probability distribution on this interval describing
the relative frequency of different measurement errors [15].

Classification vs. regression. In some cases, the desired
variable y takes only finite many values – e.g., sick or healthy;
poor, medium, or rich, etc. Such problems are known as
classification problems.

In other cases, the variable y can take all possible values
within a certain interval. Such problems are known as regres-
sion problems.

Positive and negative examples. In addition to cases when
we know both x and y – which we will call positive examples,
there are also some cases in which we know x, but we only
have partial information about y – e.g., we know that y does
not belong to a certain interval. We will call such examples
negative examples.

In classification problems – especially in binary classifica-
tion problems, when we have only two possible values y1 and
y2 of the quantity y – negative example are ubiquitous: indeed,
every positive example in which we know that y = y2 can be
interpreted as a negative example in which we know that y is
not equal to y1.

However, in regression problems, negative examples are
usually not used. In principle, they provide an additional
information about the dependence, so it would be beneficial to
use them – however, they are not used because it is not clear
how to use them.

What we do in this paper. In this paper, we show how to
use negative examples, and we show cases when the use of
negative examples help.

In our analysis, we will cover all three major types of
uncertainty: interval, fuzzy, and probabilistic. In our analysis,
we will assume, for simplicity, that the x values are known
exactly (i.e., to be more precise, that the inaccuracy in x can
be safely ignored), but that the values of y are known with
uncertainty. In all three cases, we assume that we know the
family of dependencies y = f(x, c1, . . . , cn) – e.g., the family
of all linear functions or the family of all quadratic functions
– and we want to find the values c = (c1, . . . , cn) of the
parameters for which the corresponding dependence is the best
fit with the available data.

Important comment: negative examples in education. An-
other application area where negative examples are useful
is education. A significant part of knowledge is taught by
presenting examples

(
x(k), y(k)

)
of a problem x and of its

correct solution y. It is well know, however, that learning can

be enhanced if, in addition to correct solutions, student also
see example of typical mistakes – e.g., pairs

(
x(k), y(k)

)
in

which we know that y(k) is not a correct solution.

II. CASE OF INTERVAL UNCERTAINTY

Regression under interval uncertainty: a brief reminder.
Following the general simplifying assumption, let us first
consider the case when the values x(k) are known exactly,
but the values y(k) are known with interval uncertainty – i.e.,
that for each k, we know the interval

[
y(k), y(k)

]
that contains

the actual (unknown) value y(k).
Based on these measurement results, we select the values

c = (c1, . . . , cn) for which the following condition is satisfied
for all k:

y(k) ≤ f
(
x(k), c1, . . . , cn

)
≤ y(k), 1 ≤ k ≤ K. (1)

Regression under interval uncertainty: algorithms. For
each i, we want to find the range [ci, ci] of possible values
of ci. This range can be obtained by solving the following
two constraint optimization problems:
• to find ci, we minimize ci under the linear constraints (1);

and
• to find ci, we maximize ci under the linear constraints (1).

In the general non-linear case, this problem is NP-hard (even
finding one single combination c that satisfies all the con-
straints (1) is, in general, NP-hard); see, e.g., [6]. In such
cases, constraint solving algorithms (see, e.g., [3]) can lead
to approximate ranges: e.g., to enclosures [c′i, c

′
i] ⊇ [ci, ci] for

the actual range.
The problem of computing the ranges [ci, ci] becomes

feasible if we consider families that linearly depend on the
parameters ci, i.e., families of the type

f(x, c1, . . . , cn) = f0(x) + c1 · f1(x) + . . .+ cn · fn(x). (2)

In this case, inequalities (1) become linear inequalities in terms
of the unknowns ci:

y(k) ≤ f0(x) + c1 · f1
(
x(k)

)
+ . . .+ cn · fn

(
x(k)

)
≤ y(k),

1 ≤ k ≤ K (3)

In this case, e.g., the range [ci, ci] of possible values of ci can
be obtained by solving the following two linear programming
problems – i.e., problems of optimizing a linear function under
linear constraints:
• to find ci, we minimize ci under the linear constraints (3);

and
• to find ci, we maximize ci under the linear constraints (3).

There exist feasible algorithms for solving linear programming
problems; see, e.g., [2], [7]. Thus, the corresponding regression
problem can indeed be feasibly solved.

What if we have “negative” intervals? What if, in addition
to “positive” intervals – i.e., intervals that contain the y-
values y(k), k = 1, . . . ,K – we also have “negative” intervals



(
y(k), y(k)

)
, k = K+1, . . . , L – i.e., intervals that are known

not to contain the corresponding values y(k). In this case, in
addition to the condition (1) satisfied for all k from 1 to K,
we also have an additional condition that must be satisfied for
each ` from K + 1 to L:

f
(
x(`), c1, . . . , cn

)
≤ y(`) or

y(`) ≤ f
(
x(`), c1, . . . , cn

)
. (4)

In this case, the question is to find the values c = (c1, . . . , cn)
that satisfy all the constraints (1) and (4).

Negative intervals can help. Suppose that for a linear model
y = c1 · x, we have two observations: for x = −1 and for
x = 1, we have y ∈ [−1, 1]. One can easily see that in this
case, the set of possible values of c1 is the interval [−1, 1].

In particular, for x = 2, the only information that we can
extract from this data is that y ∈ [−2, 2].

Now, if we know that for x = 2, the value y cannot be
in the interval (−3, 2), then the set of possible values of y
narrow down to a single value y = 2, and the set [−1, 1] of
possible values of c1 narrows down to a single value c1 = 1.

With negative intervals, the problem becomes NP-hard
already in the linear case. Indeed, it is known that the
following problem is NP-hard (see, e.g., [6], [14]): given
natural numbers s1, . . . , sn and s, find a subset of the values si
that adds up to s. In other words, we need to find the values
ci ∈ {0, 1} (describing whether to take the i-th value si or

not) for which
n∑

i=1

ci · si = s.

This problem can be easily reformulated as an interval
problem with positive and negative examples. For this purpose,
we take a linear model

y = c1 · x1 + . . .+ cn · xn

and the following examples:
• a positive example in which xi = si for all i and
y ∈ [s, s]; consistency with this positive example means
that

s =

n∑
i=1

ci · si;

• n additional positive examples; in the i-th example, xi =
1, xj = 0 for all j 6= i, and y ∈ [0, 1]; consistency with
each such example means that ci ∈ [0, 1]; and

• n negative examples; in the i-th example, xi = 1, xj = 0
for all j 6= i, and y 6∈ (0, 1); consistency with each such
example means that ci 6∈ (0, 1).

Together with the previous consistency, this means exactly that
ci ∈ {0, 1}.

So what do we do: first idea. NP-hard implies that, unless P =
NP (which most computer scientists believe to be impossible),
no feasible algorithm is possible that would always compute
the exact ranges for ci – or even check whether the data is
consistent with the model. So what do we do?

Each negative interval
(
y(`), y(`)

)
means that the actual

value of y(`) is either in the interval
(
−∞, y(`)

]
or in the

interval
[
y(`),∞

)
. Thus:

• we can add, to K positive intervals, the first of these
two semi-infinite intervals, solve the corresponding linear
programming problem, and get ranges

[
c
(`),−
i , c

(`),−
i

]
for

the coefficients ci;
• we can also add, to K positive intervals, the second

of these two semi-infinite intervals, solve the corre-
sponding linear programming problem, and get ranges[
c
(`),+
i , c

(`),+
i

]
for the coefficients ci.

Since the actual value y(`) is either in the first or in the second
of the semi-infinite intervals, the actual range of possible
values of each ci belongs to the union of the two intervals:[

c
(`)
i , c

(`)
i

]
=
[
c
(`),−
i , c

(`),−
i

]⋃[
c
(`),+
i , c

(`),+
i

]
, (4)

i.e., we take

c
(`)
i = min

(
c
(`),−
i , c

(`),+
i

)
and

c
(`)
i = max

(
c
(`),−
i , c

(`),+
i

)
. (5)

The actual value ci belongs to all these intervals, so we can
conclude that it belongs to the intersection [ci, ci] of all these
intervals:

[ci, ci] =

L⋂
`=K+1

[
c
(`)
i , c

(`)
i

]
, (6)

i.e., we take

ci = max
`
c
(`)
i and ci = min

`
c
(`)
i . (6)

If this intersection is empty, this means that the model is
inconsistent with observations.

Second idea. In the above idea, every time, we only take
into account one negative example. Instead, we can take into
account two negative examples. Then, for each pair (`, `′) of
negative examples, we have four possible cases:
• we can have the case a = −− when y` ∈

(
−∞, y(`)

]
and y`

′ ∈
(
−∞, y(`′)

]
;

• we can have the case a = −+ when y` ∈
(
−∞, y(`)

]
and y`

′ ∈
[
y(`

′),∞
)

;

• we can have the case a = +− when y` ∈
[
y(`),∞

)
and

y`
′ ∈
(
−∞, y(`′)

]
; and

• we can have the case a = ++ when y` ∈
[
y(`),∞

)
and

y`
′ ∈
[
y(`

′),∞
)

.
For each of these four cases a = −−,−+,+−,++, we
can add the corresponding two semi-infinite intervals to K

positive intervals, and find the ranges
[
c
(`,`′),a
i , c

(`,`′),a
i

]
for

the coefficients ci. Then, we can conclude that the actual value
of ci belongs to the union of these four intervals:[

c
(`,`′)
i , c

(`,`′)
i

]
=
⋃
a

[
c
(`,`′),a
i , c

(`,`′),a
i

]
, (7)



i.e., we take

c
(`,`′)
i = min

a
c
(`,`′),a
i and c(`,`

′)
i = max

a
c
(`,`′),a
i . (8)

The actual value ci belongs to all these intervals, so we can
conclude that it belongs to the intersection [ci, ci] of all these
intervals:

[ci, ci] =
⋂

K+1≤`,`′≤L

[
c
(`,`′)
i , c

(`,`′)
i

]
, (9)

i.e., we take

ci = max
`,`′

c
(`,`′)
i and ci = min

`,`′
c
(`,`′)
i . (10)

In this method, we get, in general, a better range – with
smaller excess width – but now, instead of considering

O(L−K)

cases, we need to consider O
(
(L−K)2

)
cases.

We can get even more accurate estimates for the range
if we consider all possible triples, 4-tuples, etc., of negative
intervals, but then we will need to consider O

(
(L−K)3

)
,

O
(
(L−K)4

)
, etc. cases.

III. CASE OF FUZZY UNCERTAINTY

What is fuzzy uncertainty: a brief reminder. In some cases,
the values y are not measured but evaluated by an expert. An
expert can say something like “the value of y is close to 1.5”.
To formalize such imprecise (“fuzzy”) knowledge, Lotfi Zadeh
invented special techniques – that he called fuzzy; see, e.g.,
[1], [4], [9], [11], [12], [13], [16].

In these techniques, for each imprecise expert statement
about a quantity, we ask an expert to estimate, on a scale
from 0 to 1, his/her degree of confidence that the expert’s
statement holds for this value (e.g., that 1.7 is close to 1.5).
The function that assigns this degree to each possible value is
called a membership function.

The degrees of confidence a, b, . . . in individual statements
A,B, . . . enable us also to estimate degrees of confidence
in composite statements such as A&B, A ∨ B, etc. The
algorithms f&(a, b) and f∨(a, b) for such estimates are called
“and”- and “or”-operations, or, for historical reasons, t-norms
and t-conorms. For example, the most widely used “and”-
operations are min(a, b) and a · b.

Regression under fuzzy uncertainty: a brief reminder. In
line with the general idea, let us assume that we know the
values x(k) exactly, and that we know the corresponding y-
valued y(k) with fuzzy uncertainty – i.e., that for each example
k and for each possible value y of this quantity, we know our
degree of confidence µk(y) that this value of y is possible.

In this case, the degree to which a model y =
f(x, c1, . . . , cn) is consistent with the k-th observation is equal
to µk

(
f
(
x(k), c1, . . . , cn

))
, and the degree to which a model

is consistent with all K observations is equal to

f&

(
µ1

(
f
(
x(1), c

))
, . . . , µK

(
f
(
x(K), c

)))
. (11)

A natural idea is to select the values c = (c1, . . . , cn) for
which this degree is the largest possible.

What if we have negative examples? Suppose now that, in
addition to K positive examples, we also have L−K negative
examples, for which we know that the expert’s estimate is
wrong. In fuzzy logic, the degree to which a statement is
wrong is usually estimated as 1 minus the degree to which
this statement is true. So, for a negative example, the degree
to which this example is consistent with the model is equal to

1− µ`

(
f
(
x(k), c1, . . . , cn

))
. (12)

Thus, in this case, we should select a model for which the
following degree takes the largest possible value:

f&

(
µ1

(
f
(
x(1), c

))
, . . . , µK

(
f
(
x(K), c

))
,

1− µK+1

(
f
(
x(K+1), c

))
, . . . ,

1− µL

(
f
(
x(L), c

)))
. (13)

IV. CASE OF PROBABILISTIC UNCERTAINTY

Regression under probabilistic uncertainty: a brief re-
minder. Probabilistic uncertainty means that for each mea-
surement k, we know the probabilities of different possible
values y, i.e., we know, e.g., the probability density function
ρk(y) describing these probabilities.

In this case, the probability that a model y =
f(x, c1, . . . , cn) is consistent with the k-th observation is
proportional to ρk

(
f
(
x(k), c1, . . . , cn

))
. It is usually assumed

that different measurements are independent. Thus, the prob-
ability that a model is consistent with all K observations is
equal to the product of the corresponding probabilities

K∏
k=1

ρk

(
f
(
x(k), c1, . . . , cn

))
. (14)

A natural idea is to select the values c1, . . . , cn for which
this probability is the largest possible. This is known as the
Maximum Likelihood method.

What if we have negative examples? From the purely
probabilistic viewpoint, it is not clear how to handle such
situations. However, since we have a solution for the fuzzy
case, we can use the fact – emphasized many times by Zadeh –
that the main difference between a membership function µ(y)
and a probability density function ρ(y) is in normalization
(see, e.g., [5] and references therein):
• a membership function is usually selected so that

max
y

µ(y) = 1, while

• the probability density function is selected so that the
overall probability is 1, i.e., that

∫
ρ(y) dy = 1.

Of course this is not the only difference: e.g., usually, different
operations are used in fuzzy and probabilistic cases; however,
this is, in a nutshell, the main difference.

Thus:



• if we have a membership function, then, by multiplying
it by an appropriate constant, we can get a probability
density function, and, vice versa,

• if we have a probability density function ρ(y), then, by
dividing it by m = max

y′
ρ(y′), we will get a membership

function.
So, a natural idea is to convert the original probabilistic
knowledge ρk(y) into fuzzy one, with µk(y) = c−1k · ρk(y),
where ck

def
= max

y′
ρk(y

′). In this case, the fuzzy approach to

regression will lead us to maximize the expression (11). We
want the probability-to-fuzzy translation to be consistent with
the Maximum Likelihood approach. Thus, we need to select
f&(a, b) = a · b. In this case, the expression (11) takes the
form

K∏
k=1

µk

(
f
(
x(k), c1, . . . , cn

))
=

(
k∏

k=1

c−1k

)
·

(
K∏

k=1

ρk

(
f
(
x(k), c1, . . . , cn

)))
. (15)

This expression differs from (14) only by a multiplicative
constant, so maximizing this expression is indeed equivalent
to maximizing the expression (14) – i.e., to the Maximum
Likelihood approach.

Now it is easy to take into account negative examples: we
just maximize the product

K∏
k=1

µk

(
f
(
x(k), c

))
·

L∏
`=K+1

(
1− µ`

(
f
(
x(`), c

)))
, (16)

where
µk(y)

def
=

ρk(y)

max
y′

ρk(y′)
. (17)

Similarly to the derivation of the formula (15), we can see that
maximizing the expression (16) is equivalent to minimizing a
simpler expression

K∏
k=1

ρk

(
f
(
x(k), c

))
·

L∏
`=K+1

(
1− µ`

(
f
(
x(`), c

)))
. (18)

V. FUTURE WORK

What we did. In this paper, we provided a theoretical founda-
tion for using negative examples on regression-like problems,
and we showed, on simplified toy examples, that the resulting
algorithms indeed lead to more accurate models.

What we plan to do. Now that the theoretical foundation has
been formulated, we plan to apply the resulting algorithms and
ideas to real-life problems.

We also hope that others will join us in this effort.
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