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Abstract

In many real-life situations ranging from financial to volcanic data,
growth is described either by a power law – which is linear in log-log
scale, or by a quadratic dependence in the log-log scale. In this paper, we
use natural scale invariance requirement to explain the ubiquity of such
dependencies. We also explain what should be a reasonable choice of the
next model, if quadratic turns out to be not too accurate: it turns out that
under scale invariance, the next class of models are cubic dependencies in
the log-log scale, then fourth order dependencies, etc.

1 Formulation of the Problem

Predictions: a typical situation. One of the main objective of science
and engineering is to predict the future state of the world – i.e., the future
values of the quantities that describe this state – and to come up with measures
that lead to the most favorable future state. For example, we want to predict
tomorrow’s weather – and if it will be catastrophic in a given area, we need
to plan corresponding closings and, if needed, evacuations. We want to predict
next year’s GDP – and if the current trends predict a crisis, we want to come up
with measures that would prevent this crisis – or at least decrease its severity.

In some situations, we can predict the future values of some quantities with
high accuracy. For example, we can predict Solar eclipses centuries ahead.

However, such situations are rare. In most real-life situations, we cannot
make exact predictions: e.g., when we predict the weather, there are many
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factors that affect tomorrow’s weather and that we, at present, do not know.
In such situations, we can predict, at best, the probabilities of future values of
the corresponding quantity. These probabilities can be described, e.g., by the
probability density function (pdf) ρ(x). Such situations are typical in economics
and finance, they are also typical in geosciences – e.g., in predicting volcanic
activity, they are typical in many other application areas.

Stationary vs. non-stationary situations. In some cases – e.g., in celestial
mechanics or, for a reasonably short period of time, in weather prediction – the
corresponding probabilities remain the same day after day and year after year.
So, the probability density function ρt(x) remains the same for all moments of
time t: ρt(x) = ρ(x).

However, in many other cases, the situation changes with time: on average,
the values x grow with time. This happens with economic characteristics such
as GDP or stock prices, this happens with volcanic activity when the volcano
becomes more and more active. In many such cases, the shape of the probability
distribution remains the same, but the scale changes. In other words, at each
moment of time t, the distribution of x is similar to the initial (t = 1) distribution

of the quantity
x

C(t)
for some increasing function C(t), i.e., ρt(x) should be

proportional to ρ1

(
x

C(t)

)
. The coefficient of proportionality can be easily

found from the condition that the overall probability should be equal to 1, i.e.,
that

∫
ρt(x) dx = 1. Thus, we get

ρt(x) =
1

C(t)
· ρ
(

x

C(t)

)
. (1)

How C(t) depends on time: empirical fact. In many practical situations,
the growth C(t) is described by the power law:

C(t) = A · tb, (2)

for some constants A and b. If we take the logarithm of both sides of this
formula, we can conclude that in the log-log scale, the power law becomes a
linear dependence:

ln(C(t)) = b · ln(t) + ln(A). (3)

In other cases, we have a more complex dependence

C(t) = A · tb(t) (4)

where
b(t) = b0 + b1 · ln(t). (5)

In this case, in log-log-scale, we have

ln(C(t)) = b(t) · ln(t) + ln(A) = b0 · ln(t) + b1 · (ln(t))2 + ln(A). (6)
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In other words, we have a quadratic log-log dependence, of which the linear
log-log dependence (3) is a particular case corresponding to b1 = 0.

Such dependencies is really ubiquitous: e.g., an empirical analysis provided
in [2] have shown that many real-life dependencies, ranging from economic to
volcanic data, follow these formulas. This naturally leads to the following ques-
tions.
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Natural questions.

• How can we explain the ubiquity of the dependence (4)-(5)?

• When the match with this formula is not perfect, what more accurate
formula should we try?

In this paper, we provide answers to both questions.

2 Analysis of the Problem: Why Power Law?

Why power law. In many case, the dependence of C(t) on t is described by the
power law. So, before we analyze the more general question of why the general
dependence (4)-(5) is ubiquitous, let us analyze why power law is frequently
observed.

Scale-invariance: idea. We are interested in learning how the growth function
C(t) depends on time t. In our analysis, we use numerical values of C(t) and
numerical values of time t. Numerical values of time depend on the measuring
unit: we get different values if we use years, quarters, months, days, etc. If
we replace the original unit with the one which is λ times smaller, then all
numerical value of time t are replaced with new values λ · t. For example, if we
replace years with months, then in the new units, the period of 2 years becomes
12 · 2 = 24 months.

In many cases, we do not have a preferred unit for measuring time. In such
situations, it is reasonable to require that the dependence between C and t
remains the same if we change the unit for measuring time. This requirement
is known as scale invariance.

The requirement of scale-invariance is typical in physics: e.g., the formula
d = v·t describing the relation between distance d, velocity v, and time t remains
true no matter what units we select for measuring time, e.g., hours or seconds.

Of course, we cannot simply assume that the value C(t) remains the same:
the growth in two years is clearly different from the growth in two months.
This can be easily explained on the example of the above physics formula: if we
change the unit for time, then, for the formula to remain valid, we need to also
appropriately change the units for other quantities: e.g., replace the velocity unit
from km/hour to km/sec. In our cases, this means that if we change a unit for
time, then the formula C = C(t) should remain valid if we also appropriately
change the unit for C, into a new unit which is µ times smaller, for some µ
depending on λ.

In other words, if we have
C = C(t), (7)

then, for every λ, we should also have

C ′ = C(t′), (8)

where
C ′ = µ(λ) · C and t′ = λ · t. (9)
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Scale-invariance explains power law. Substituting expressions (9) for C ′

and t′ into the formula (8), we conclude that µ(λ) · C = C(λ · t). Substituting
the expression (7) for C into this formula, we conclude that

C(λ · t) = µ(λ) · C(t). (10)

In real-life, the dependencies are usually continuous, and for continuous func-
tions, it is known that all solutions of the function equation (10) have the form
C(t) = A · tb; see, e.g., [1].

Thus, we indeed have a natural explanation for the power law.

3 How to Explain Quadratic Log-Log Depen-
dence

Main idea. As we have mentioned earlier, the main reason why the real-life
processes are probabilistic is that the actual value x(t) depends also on some
characteristics that we do not know. In particular, this means that the value
C(t) also depends on such characteristics y1, . . . , yn: C = C(t, y1, . . . , yn).

Let us first consider the simplest such case, when we consider only the de-
pendence of one such characteristics y1, then C = C(t, y1).

Let us apply scale-invariance to this situation. Now, in addition to time
t, we have another quantity y1 for which we can also select different measuring
units. It is therefore reasonable to require that no matter how we change both
unit for t and unit for y1, we will get the same dependence.

In precise terms, for every λ > 0 and λ1 > 0, there exists a value µ(λ, λ1)
such that if

C = C(t, y1), (11)

then
C ′ = C(t′, y′1), (12)

where
t′ = λ · t, y′1 = λ · y1, C ′ = µ(λ, λ1) · C. (13)

Let us analyze this situation. Substituting the expressions (13) into the
formula (12), we conclude that

C(λ · t, λ1 · y1) = µ(λ, λ1) · C. (14)

Substituting the expression (11) for C into the formula (14), we get

C(λ · t, λ1 · y1) = µ(λ, λ1) · C(t, y1). (15)

For each y1, by taking λ1 = 1, we conclude that

C(λ · t, y1) = µ(λ, 1) · C(t, y1). (16)
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Thus, for each y1, the function Cy1(t)
def
= C(t, y1) satisfies the formula (10).

Thus, based on the result cited in the previous section, we have

Cy1
(t) = C(t, y1) = A(y1) · tb(y1), (17)

for some A and b depending on y1. In particular, in log-log scale, we get

ln(C(t, y1)) = b(y1) · ln(t) + ln(A(y1)). (18)

Similarly, for every t, we can take λ = 1 and get

C(t, λ1 · y) = µ(1, λ1) · C(t, y1). (19)

Thus, for each t, the function Ct(y1)
def
= C(t, y1) satisfies the formula (10). Thus,

based on the result cited in the previous section, we have

Ct(y1) = C(t, y1) = A′(t) · yb
′(t)

1 , (20)

for some A′ and b′ depending on t. In particular, in log-log scale, we get

ln(C(t, y1)) = b′(t) · ln(y1) + ln(A′(t)). (21)

The formulas (18) and (21) describe the same expression ln(C(t, y1)). By
equating these expressions for two different values t1 < t2, we conclude that

b(y1) · ln(t1) + ln(A(y1)) = b′(t1) · ln(y1) + ln(A′(t1)); (22)

b(y1) · ln(t2) + ln(A(y1)) = b′(t2) · ln(y1) + ln(A′(t2)). (23)

Subtracting (22) from (23), we get

b(y1) · (ln(t2)− ln(t1)) = (b′(t2)− b′(t1)) · ln(y1) + (ln(A′(t2))− ln(A′(t1)). (24)

So, by dividing both sides by the difference ln(t2) − ln(t1), we get

b(y1) = c1 · ln(y1) + c2, (25)

where we denoted

c1 =
b′(t2) − b′(t1)

ln(t2) − ln(t1)
and c2 =

ln(A′(t2)) − ln(A′(t1))

ln(t2) − ln(t1)
. (26)

Similarly, if we multiply (23) by ln(t1), (22) by ln(t2), and subtract the
results, we get

ln(A(y1)) · (ln(t2) − ln(t1)) = (b′(t2) · ln(t1) − b′(t1) · ln(t2)) · ln(y1)+

(ln(A′(t2)) · ln(t1) − ln(A′(t1)) · ln(t2)), (27)

hence
ln(A(y1)) = c3 · ln(y1) + c4, (28)
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where we denoted

c3 =
b′(t2) · ln(t1) − b′(t1) · ln(t2)

ln(t2) − ln(t1)
(29a)

and

c4 =
ln(A′(t2)) · ln(t1) − ln(A′(t1)) · ln(t2)

ln(t2) − ln(t1)
. (29b)

Substituting the expressions (25) and (28) into the formula (18), we conclude
that

ln(C(t, y1)) = (c1 · ln(y1) + c2) · ln(t) + (c3 · ln(y1) + c4) =

c4 + c2 · ln(t) + c3 · ln(y1) + c1 · ln(t) · ln(y1). (30)

If we now assume that the dependence of y1 on t is also scale-invariant, then
the result of the previous section shows that

y1 = A′′ · tb
′′

for some A′′ and b′′, i.e., in log-log form,

ln(y1) = b′′ · ln(t) + ln(A′′). (31)

Substituting the expression (31) into the formula (30), we get

ln(C(t)) = ln(C(t, y1(t))) = C0 + C1 · ln(t) + C2 · (ln(t))2, (32)

where

C0 = c4 + c3 · ln(A′′), C1 = c2 + c3 · b′′ + c1 · ln(A′′), C2 = c1 · b′′. (33)

Thus, we indeed explained the quadratic log-log dependence!

4 What Next?

Let us use scale-invariance. In general, we have a dependence

C = C(t, y1, . . . , yn), (34)

on n ≥ 1 auxiliary quantities. In this general case, scale-invariance means for
every λ > 0 and for all possible values λ1 > 0, . . . , λn, there exists a value
µ(λ, λ1, . . . , λn) such that if (34) is satisfied, then

C ′ = C(t′, y′1, . . . , y
′
n), (35)

where

t′ = λ · t, y′1 = λ · y1, . . . , y′n = λ · yn, C ′ = µ(λ, λ1, . . . , λn) · C. (36)
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What we can derive from scale-invariance. Similar to the previous section,
we can thus conclude that the expression ln(C(t, y1, . . . , yn)) is linear in ln(t),
linear in ln(y1), . . . , and linear in ln(yn). Thus, it is a multi-linear function:

ln(C(t, y1, . . . , yn)) = c0 + ct · ln(t) +

n∑
i=1

ci · ln(yi)+

n∑
i=1

ct,i · ln(t) · ln(yi) +
∑
i<j

ci,j · ln(yi) · ln(yj) + . . .+

ct,1,...,n · ln(t) · ln(y1) · . . . · ln(yn). (37)

If we assume that the dependence of each auxiliary quantity yi on t is also
scale-invariant, then we get

ln(yi) = b′′i · ln(t) + ln(A′′
i ) (38)

for some values b′′i and A′′
i . Substituting the expressions (38) into the formula

(37), we conclude that

ln(C(t)) = C0 + C1 · ln(t) + C2 · (ln(t))2 + . . .+ Cn+1 · (ln(t))n+1. (39)

Resulting recommendation. So, if quadratic log-log dependence (corre-
sponding to n = 1) is too inaccurate, we need to try cubic log-log dependence
(corresponding to n = 2), then, if needed, fourth order log-log dependence cor-
responding to n = 3, etc.
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