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Abstract

In many applications of fuzzy logic, to estimate the degree of confi-
dence in a statement A&B, we take the minimum min(a, b) of the expert’s
degrees of confidence in the two statements A and B. When a < b, then an
increase in b does not change this estimate, while from the commonsense
viewpoint, our degree of confidence in A&B should increase. To take this
commonsense idea into account, Ildar Batyrshin and colleagues proposed
to extend the original order in the interval [0, 1] to a lexicographic order
on a larger set. This idea works for expressions of the type A&B, so
maybe we can extend it to more general expressions? In this paper, we
show that such an extension, while theoretically possible, would violate
another commonsense requirement – associativity of the “and”-operation.
A similar negative result is proven for lexicographic extensions of the
maximum operation – that estimates the expert’s degree of confidence in
a statement A ∨B.

1 Formulation of the Problem

Min and max operations: reminder. In fuzzy logic (see, e.g., [5, 8, 9, 10,
11, 12, 15]), the expert’s degree of confidence in a statement is described by a
number from the interval [0, 1].

Often, we know the expert’s degree of certainty a and b of statements A
and B, and, based on these two values, we need estimate the expert’s degree of
confidence in a composite statement A&B. The corresponding estimate can be
denoted by a& b. In many applications, we have a& b = min(a, b).

Similarly, as an estimate a ∨ b for the expert’s degree of confidence in a
composite statement A∨B, often, the max operation a∨ b = max(a, b) is used.

Need to describe a subtle difference. According to the usual min-operation,
a& a = a and a& 1 = a, so the value a& b remains the same when b = a and
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when b = 1. However, intuitively, if we increase our degree of confidence in a
statement B, the degree of confidence in a composite statement A&B should
increase. Thus, we expect that a& a < a& 1. In other words, instead of a single
common value a ∈ [0, 1], we should have different values a& b corresponding to
different b ∈ [a, 1].

In other words, we need to extend the interval [0, 1] to a larger set, and
extend the original order to the new set, so that:

• what was smaller remains smaller, but

• what was equal may not remain equal anymore.

How can we describe this subtle difference. How can we compare ex-
pressions a& b? Since the “and”-operation is naturally commutative, we can,
without losing generality, order a and b in increasing order, i.e., we can always
assume that a ≤ b.

How can we compare expressions a1 & b1 and a2 & b2 in which a1 ≤ b1 and
a2 ≤ b2? If a1 < a2, then for the min-operation, we have

a1 & b1 = a1 < a2 = a2 & b2.

Since we want to retain the previous order, we thus conclude that a1 & b1 <
a2 & b2 in the desired extension as well.

If a2 < a1, then similarly, we should have a2 & b2 < a1 & b1.
What if a1 = a2? In this case, for the min-operation, we get equality, but

this is exactly the equality that want to clarify, so we say that a1 & b1 < a2 & b2
if a1 = a2 and b1 < b2.

This order on expressions a& b can be naturally extended to values a ∈ [0, 1],
since each such value can be described as a& 1.

So, we arrive at the following lexicographic order: when a1 ≤ b1 and a2 ≤ b2,
then a1 & b1 ≤ a2 & b2 if and only if:

• either a1 < a2,

• or a1 = a2 and b1 ≤ b2.

Such an order was first proposed in [1, 2, 3, 4, 14]. It was successfully used in
applications to geosciences; see, e.g., [14].

Natural question. The idea of a lexicographic order works well for expressions
of the type a& b. Can we extend this idea to more general expressions?

In this paper, we show that while such an extension is possible, it is not
what we look for: e.g., the corresponding operation will not be associative –
while we want associativity a& (b& c) = (a& b) & c, since, from the common
sense viewpoint, A& (B &C) means exactly the same as (A&B) &C: that all
three statement A, B, and C are true.

A similar result is also proven for a similar lexicographic extension of the
max-operation.

2



2 Main Result: Case of Min Operation

Definition 1. Let (S,≤) be a partially ordered set with the largest element 1
that contains two elements a and b for which a < b < 1. Let & be a commutative
operation on the set S for which a& 1 = a for all a. We say that the order ≤
is lexicographic if for all a1 ≤ b1 and a2 ≤ b2, we have a1 & b1 ≤ a2 & b2 if and
only if:

• either a1 < a2,

• or a1 = a2 and b1 ≤ b2.

Proposition 1. When the order is lexicographic, the operation & is not asso-
ciative.

Proof. Let us consider the elements a < b < 1 whose existence is guaranteed by
the definition of lexicographic order. Then, by this definition, for a1 = a2 = a,
b1 = b, and b2 = 1, we get

a& b < a& 1. (1)

From a < b and from the fact that a& 1 = a, we conclude that

a& 1 = a < b. (2)

Now, for a1 = a& b, a2 = a& 1, b1 = 1, and b2 = b:

• we have a1 ≤ b1 – since 1 is the largest element,

• we have a2 ≤ b2 – by formula (2), and

• we have a1 < a2 – by formula (1).

So, since the order is lexicographic, we can conclude that a1 & b1 < a2 & b2, i.e.,
that

(a& b) & 1 < (a& 1) & b, (3)

while by associativity and commutativity, we would have (a& b) & 1 = (a& 1) & b.
Thus, the operation & is not associative.

The proposition is proven.

3 Main Result: Case of Max Operation

Definition 2. Let (S,≤) be a partially ordered set with the smallest element 0
that contains two elements a and b for which 0 < a < b. Let ∨ be a commutative
operation on the set S for which a ∨ 0 = a for all a. We say that the order ≤
is lexicographic if for all a1 ≤ b1 and a2 ≤ b2, we have a1 ∨ b1 ≤ a2 ∨ b2 if and
only if:

• either b1 < b2,
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• or b1 = b2 and a1 ≤ a2.

Proposition 2. When the order is lexicographic, the operation ∨ is not asso-
ciative.

Proof. Let us consider the elements 0 < a < b whose existence is guaranteed
by the definition of lexicographic order. Then, by this definition, for a1 = 0 <
a2 = a, and b1 = b2 = b, we get

0 ∨ b < a ∨ b. (4)

From a < b and from the fact that 0 ∨ b = b, we conclude that

a < 0 ∨ b = b. (5)

Now, for a1 = a, a2 = 0, b1 = 0 ∨ b, and b2 = a ∨ b:

• we have a1 ≤ b1 – by formula (5),

• we have a2 ≤ b2 – since 0 is the smallest element, and

• we have b1 < b2 – by formula (4).

So, since the order is lexicographic, we can conclude that a1 ∨ b1 < a2 ∨ b2, i.e.,
that

a ∨ (0 ∨ b) < 0 ∨ (a ∨ b), (6)

while by associativity and commutativity, we would have a∨(0∨b) = 0∨(a∨b).
Thus, the operation ∨ is not associative.

The proposition is proven.
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