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Abstract

In many real-life situations in engineering (and in other disciplines),
we need to solve an optimization problem: we want an optimal design, we
want an optimal control, etc. One of the main problems in optimization is
avoiding local maxima (or minima). One of the techniques that helps with
solving this problem is annealing: whenever we find ourselves in a possibly
local maximum, we jump out with some probability and continue search
for the true optimum. A natural way to organize such a probabilistic
perturbation of the deterministic optimization is to use quantum effects.
It turns out that often, quantum annealing works much better than non-
quantum one. Quantum annealing is the main technique behind the only
commercially available computational devices that use quantum effects –
D-Wave computers. The efficiency of quantum annealing depends on the
proper selection of the annealing schedule, i.e., schedule that describes
how the perturbations decrease with time. Empirically, it has been found
that two schedules work best: power law and exponential ones. In this pa-
per, we provide a theoretical explanation for these empirical successes, by
proving that these two schedules are indeed optimal (in some reasonable
sense).

1 Formulation of the Problem

Optimization is important. In practical applications, whether it is applica-
tions to engineering or to economics, we want to find the best possible decision,
i.e., the decision for which the appropriate objective function attains its largest
possible value.

Local maxima are a big problem. There exist many numerical algorithms
for optimization. How do we know that we have reached the maximum? One
natural criterion is that we compare the quality of current alternative with
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the qualities of several similar alternatives. If the current alternative is indeed
optimal, then it is better than every other alternative – in particular, better
than all nearby alternatives.

The problem is that often, we have a situation of local maximum, when an
alternative is better than all nearby alternatives, but still worse than some other
– distant – alternative.

Simulated annealing: an intelligent way to avoid local maxima. If in-
creasing or decreasing one of the parameters increases the value of the objective
function, then it is very clear what to do: change the value in this direction.
But what if we are possibly at a local maximum? In this case, it is not clear
in which direction we should go. All directions are, in this sense, equally good
(or equally bad), so a reasonable idea is to pick each direction at random, so
that each possible direction will have the same probability. The correspond-
ing change should be significant – otherwise, we will not get out of the local
maximum.

This is the main idea behind simulated annealing: we perform some opti-
mization algorithm until we reach a possibly local maximum. Then, we perform
a random jump, and apply the optimization algorithm again, hoping that this
time it will lead us to a better alternative. If we get stuck in a (possibly local)
maximum again, we jump again, etc.

We want this process to eventually stop. Thus, instead of jumping out every
time, we jump out with some probability – and, for the process to stop, this
probability decreases with time. How exactly this probability decreases with
time is known as the annealing schedule.

Proper selection of annealing schedule is very important. The success
– or not – of simulated annealing depends on annealing schedule. If we decrease
the probability too fast, we will not give the algorithm enough time to jump
out of a local maximum. On the other hand, if we decrease it too slowly, the
algorithm will work forever and never stops.

Quantum annealing. Traditional (non-quantum) computations are deter-
ministic. So, to perform simulated annealing, we need to artificially introduce
randomness.

In contrast, quantum processes are, in general, probabilistic [7, 15, 19]. Thus,
in quantum computing, to implement a random deviation, there is no need
to artificially introduce randomness: it is sufficient to somewhat modify the
system’s dynamics.

In general, the state of a quantum system is described by a complex-valued
function ψ(t) (known as the wave function), and the dynamics of a quantum
system is described by Schroedinger’s equations

i · h̄ · ∂ψ
∂t

= Hψ, (1)

where i
def
=
√
−1 and H is a corresponding linear operator. In these terms,

annealing-type modification means adding additional terms – decreasing with
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time – to the operator H, i.e., replacing the original equation (1) with the
modified equation

i · h̄ · ∂ψ
∂t

= Hψ + γ(t) ·H0ψ, (2)

where H0 describes the deviation, and γ(t) monotonically tends to 0 as t in-
creases.

This method was first proposed in [8, 10] and has been actively explored
since then.

Quantum annealing works. There are many theoretical and practical papers
showing that with an appropriate choice of H0 and γ(t), quantum annealing
indeed helps – and moreover, it often works more efficiently than non-quantum
simulated annealing; see, e.g., [2, 3, 4, 6, 9, 11, 12, 14, 16, 17, 18, 20].

Quantum annealing is the main idea behind D-Wave Systems quantum com-
puting devices – the only commercially available and practically useful comput-
ers that utilize quantum effects in computations; see, e.g., [2, 11, 18].

The efficiency of quantum annealing can be explained in the same way as effi-
ciency of quantum computing in general: classical (non-quantum) processes can
be viewed as a limit case (i.e., in effect, particular case) of quantum processes.
Thus, when, in addition to non-quantum processes, we also allow quantum ones,
we increase the space of possible choices – and, not surprisingly, this increase
often leads to better selections.

Which annealing schedule works best: empirical facts. Similarly to the
non-quantum case, the efficiency of quantum annealing strongly depends on the
proper selection of the annealing schedule, i.e., the dependence of γ(t) on time
t. Empirically, depending on the specific optimization problem, two scheduled
work the best:

• the power law annealing schedule γ(t) = A · ta, for some A and a < 0; see,
e.g., [12, 13]; and

• the exponential annealing schedule γ(t) = A · exp(a · t) for some A and
a < 0; see, e.g., [5, 13].

What we do in this paper. In this paper, we present a possible theoretical
explanation for these empirical facts.

2 Analysis of the Problem

Physical meaning of annealing. The general idea of using simulating phys-
ical phenomena in optimization is that a physical systems tends to end up in
a state with the smallest possible energy. For example, in a gravitational field,
this means getting to as low a position as possible. In principle, we can place a
ball on top of the mountain – which will constitute a local minimum of energy.
However, if a strong wind blows and disturbs the ball, it will start falling down.
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It may reach a few local minima along the way, but eventually it will reach the
lowest possible position at the foot of the mountain.

So, a natural way to use simulated physical phenomena for optimization is
to simulate a system for which, for all the values of the parameters, its energy is
equal to the value of minimized objective function. In general, in Schroedinger
equations, energy is represented by the operator H, so for quantum annealing,
this operator must represent the desired objective function.

Need to select a family. The original optimization problem is usually not
formulated in terms of energy. So, how we transform it into energy depends in
our choice of units. We will get completely different results if we use a typical
macro-world unit like Joule or a typical micro-world unit like MeV. If we select
a different unit, this means that in original unit, instead of H, we will have
C ·H, where C is the ratio of the units.

If for the original operator H the best schedule was γ(t), then for the new
operator C ·H, the best schedule is C · γ(t), since the corresponding equation

i · h̄ · ∂ψ
∂t

= C ·Hψ + C · γ(t) ·H0ψ (3)

is equivalent to the original equation (2) if we re-scale the time, i.e., consider
t/C instead of the original time t.

Since, as we have mentioned, the choice of the energy unit is rather arbitrary,
this means that we cannot select a single annealing schedule γ(t): with each such
optimal schedule, in different energy units, a schedule C · γ(t) is optimal. Thus,
we can only select a family {C · γ(t)}C>0 of annealing functions, in which a
function γ(t) is fixed, and the parameter C can take any positive value.

What does optimal mean? Among all possible families, we want to select
the best – the optimal one. What is the best depends on the situation. We may
want to get the results as fast as possible; we may want to get the maximum
as close to the global maximum as possible even if it takes more time; there are
many other possible options.

In all these cases, we have a criterion for comparing families, i.e., saying
when one family F1 is better than family F2 (we will denote it by F2 < F1),
or F2 is better than F1 (F1 < F2), or F1 and F2 are of the same quality with
respect to the given criterion; we will denote this by F1 ∼ F2. Of course, if F1

is better than F2 and F2 is better than F3, then F1 should be better than F3.
An optimal family Fopt is a family which is better (or of the same quality)

that every other family F , i.e., for which F < Fopt of F ∼ Fopt.
What if we have two different optimal families? This happens in real-life

optimization problems: e.g., if we are minimizing time, we may have two dif-
ferent annealing schedules that takes the exact same time on given examples.
In this case, a natural idea is to use this non-uniqueness to optimize something
else: e.g., select a family with the more accurate approximation to the actual
maximum. In effect, we thus have a more complex optimality criterion: F1 is
better than F2 if either F1 is faster, or if they take the same time but F1 is more
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accurate. If this new criterion still leaves several optimal families, we can opti-
mize something else. We can continue thus modifying the optimality criterion
until we get a final criterion, for which there is exactly one optimal family.

Need for re-scaling time. We are looking for the dependence of γ(t) on time,
but the numerical value of time also depends on the choice if the measuring unit.
If we replace the original unit of time by a λ times smaller unit, then, for each
moment of time, the original numerical value t is replaced by a new value λ·t. For
example, if we replace minutes by seconds, then 2 minutes becomes 60 · 2 = 120
seconds.

It is reasonable to requires that the relative quality of a family not change
if we simply change the unit for time: e.g., if {C · γ1(t)}C>0 < {C · γ2(t)}C>0,
then we should have {C · γ1(λ · t)}C>0 < {C · γ2(λ · t)}C>0.

The numerical value of time also depends on the choice of the starting point.
If we replace the original starting point with the one which is t0 units earlier,
then all numerical values t are replaced with shifted values t+ t0. It also makes
sense to require that the relative quality of two families not depend on the choice
of the starting point, i.e., that if {C ·γ1(t)}C>0 < {C ·γ2(t)}C>0, then we should
have {C · γ1(t+ t0)}C>0 < {C · γ2(t+ t0)}C>0.

Now, we are ready to formulate our problem in precise terms.

3 Definitions and the Main Result

Definition 1. By a family, we mean a class of functions {C · γ(t)}C>0, where
γ(t) is a monotonic function that tends to 0 at infinity.

Definition 2. By an optimality criterion, we mean a pair of relations (<,∼)
on the class of all families for which the following properties hold:

• for every pair (F1, F2), we have exactly one of the possible three relations
F1 < F2, F2 < F1, and F1 ∼ F2;

• if F1 < F2 and F2 < F3, then F1 < F3;

• if F1 < F2 and F2 ∼ F3, then F1 < F3;

• if F1 ∼ F2 and F2 < F3, then F1 < F3;

• if F1 ∼ F2 and F2 ∼ F3, then F1 ∼ F3.

Definition 3. We say that a family Fopt is optimal with respect to the optimality
criterion (<,∼) if for every family F , we have F < Fopt or F ∼ Fopt.

Definition 4. We say that an optimality criterion is final if there is exactly
one family which is optimal with respect to this criterion.

Definition 5.

• For every λ > 0, by a re-scaling Tλ(F ) of a family F = {C · γ(t)}C>0, we
mean a family {C · γ(λ · t)}C>0.

5



• For every t0, by a shift St0(F ) of a family F = {C · γ(t)}C>0, we mean a
family {C · γ(t+ t0)}C>0.

• We say that an optimality criterion is scale-invariant if for all Fi and
λ < 0, F1 < F2 implies Tλ(F1) < Tλ(F2)) and F1 ∼ F2 implies Tλ(F1) ∼
Tλ(F2).

• We say that an optimality criterion is shift-invariant if for all Fi and
t0, F1 < F2 implies St0(F1) < St0(F2)) and F1 ∼ F2 implies St0(F1) ∼
St0(F2).

It seems reasonable to require that the optimality criterion be both scale- and
shift-invariant, but it turned out to be impossible:

Proposition 1. No final optimality criterion is scale-and shift-invariant.

Comment. For readers’ convenience, all the proofs are placed in the special
proofs section.

Good news is that when we require either scale-invariance or shift-invariance,
we get exactly the empirically best annealing schedules.

Proposition 2. For every scale-invariant optimality criterion, the optimal
annealing schedule is γ(t) = A · ta.

Proposition 3. For every shift-invariant optimality criterion, the optimal an-
nealing schedule is γ(t) = A · exp(a · t).

4 Proofs

Proof of Proposition 1 follows from Propositions 2 and 3: if an optimality
criterion is scale-invariant, then the corresponding annealing schedule has the
form γ(t) = A · ta and is, thus, according to Proposition 2, not shift-invariant.

Proof of Proposition 2. Let Fopt = {C · γopt(t)}C>0 be the family which is
optimal with respect to the scale-invariant optimality criterion.

1◦. Let us first prove that this family if itself scale-invariant, i.e., that we have
Tλ(Fopt) = Fopt for all λ > 0.

Indeed, since the family Fopt is optimal, we have F < Fopt or F ∼ Fopt for
every family F . In particular, we have Tλ−1(F ) < Fopt or Tλ−1(F ) ∼ Fopt.

One can easily see that Tλ(Tλ−1(F )) = F . Thus, due to scale-invariance,
for every family F , we have F < Tλ(Fopt) or F ∼ Tλ(Fopt). By definition of
optimality, this means that Tλ(Fopt) is also an optimal family. However, out
optimality criterion is final, which means that there is only one optimal family.
Thus indeed Tλ(Fopt) = Fopt.

2◦. By definition of scaling Tλ(F ), the function γ(λ · t) belongs to the family
Tλ(Fopt). Since this family is equal to the original family Fopt = {C ·γopt(t)}C>0,
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this means that the function γ(λ · t) belongs to this original family as well, i.e.,
that

γ(λ · t) = C(λ) · γ(t), (4)

for some C depending on λ.
It is known – see, e.g. [1] – that all monotonic solutions of the functional

equation (4) have the desired form A · xa. The proposition is proven.

Comment. The cited result about the functional equation (4) is easy to prove
if we additionally assume that the function γ(t) is differentiable. Then, due
to (4), the function C(λ) is also differentiable – as a ratio of two differentiable
functions. Thus, we can differentiate both sides of (4) with respect to λ and
take λ = 1; we will get

t · dγ
dt

= a · γ,

where we denoted a
def
= C ′(1). By moving all the terms containing γ to one side

and all terms containing t to another side, we get

dγ

γ
= a · dt

t
.

Integrating, we get ln(γ) = a · ln(t) + C0, where C0 is the integration constant.
By applying exp(z) to both sides, we get the desired formula γ = A · ta, for
A = exp(C0).

Proof of Proposition 3. Let Fopt = {C · γopt(t)}C>0 be the family which is
optimal with respect to the shift-invariant optimality criterion.

1◦. Let us first prove that this family if itself scale-invariant, i.e., that we have
St0(Fopt) = Fopt for all λ > 0.

Indeed, since the family Fopt is optimal, we have F < Fopt or F ∼ Fopt for
every family F . In particular, we have S−t0(F ) < Fopt or S−t0(F ) ∼ Fopt.

One can easily see that St0(S−t0(F )) = F . Thus, due to scale-invariance,
for every family F , we have F < St0(Fopt) or F ∼ St0(Fopt). By definition of
optimality, this means that St0(Fopt) is also an optimal family. However, out
optimality criterion is final, which means that there is only one optimal family.
Thus indeed St0(Fopt) = Fopt.

2◦. By definition of a shift St0(F ), the function γ(t + t0) belongs to the
family St0(Fopt). Since this family is equal to the original family Fopt =
{C · γopt(t)}C>0, this means that the function γ(t + t0) belongs to this orig-
inal family as well, i.e., that

γ(t+ t0) = C(t0) · γ(t), (5)

for some C depending on t0.
It is known – see, e.g. [1] – that all monotonic solutions of the functional

equation (5) have the desired form A · exp(a · t). The proposition is proven.
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Comment. The cited result about the functional equation (5) is easy to prove
if we additionally assume that the function γ(t) is differentiable. Then, due to
(5), the function C(t0) is also differentiable – as a ratio of two differentiable
functions. Thus, we can differentiate both sides of (5) with respect to t0 and
take t0 = 0; we will get

dγ

dt
= a · γ,

where we denoted a
def
= C ′(0). By moving all the terms containing γ to one side

and all terms containing t to another side, we get

dγ

γ
= a · t.

Integrating, we get ln(γ) = a · t+C0, where C0 is the integration constant. By
applying exp(z) to both sides, we get the desired formula γ = A · exp(a · t), for
A = exp(C0).
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